THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Чем различаются 3D-съёмки: НЛС, МЛС, ВЛС?

Между технологиями лазерного сканирования большое различие в методике 3D-съёмки, в используемых приборах, в методах регистрации и обработки массивов измерений. Соответственно, различен и достигаемый результат измерений. И в первую очередь - по точности.

Условно, по реальной точности разных методов измерений (не точности самих приборов) и по производительности работ, типы съёмки можно охарактеризовать так:

Отмечу, что применительно ко всем типам лазерных съёмок: повышение точности и детальности ведут к существенному увеличению как технических мероприятий, так и трудовых затрат, а значит - к удорожанию работ. Поэтому, в технических заданиях следует тщательнее соизмерять реальные потребности с бюджетом конкретного проекта. То есть тезис «Снять нужно абсолютно всё и как можно точнее» - это всегда окажется дорого. А вот конкретика: «Интересуют несущие строительные конструкции с точностью 4 см.» - смета сразу окажется в 2-3 раза меньше.

Современная 3D-технология "воздушное лазерное сканирование" (ВЛС) – это качественное развитие традиционных аэрофотосъёмочных технологий. Сканирование проводится с борта летящего самолета или вертолета и позволяет за один полётный день выполнить съёмку тысяч гектар поверхности земли. Получаемые трёхмерные данные содержат полную пространственно-геометрическую информацию о рельефе местности, растительном покрове, гидрографии и расположении всех наземных объектов в полосе съёмки. При больших объёмах, стоимость работ ВЛС существенно дешевле, чем привычная топографическая съёмка тахеометрами.

Сегодня ВЛС активно используется при:

    создании топографических планов различных масштабов вплоть до 1:1000;

    построении цифровых моделей местности;

    исследовании линейных и площадных объектов;

    управлении водным и лесным хозяйством;

    изучении природных и техногенных процессов;

    инвентаризации земельно-имущественного комплекса;

    градостроительстве, моделировании процессов развития города;

    инспекции линий электропередач;

    строительстве и реконструкции автомобильных и железных дорог.

Основу технологии ВЛС составляет система LIDAR . Название - транслитерация английского "Light Identification, Detection and Ranging" , означат получение и обработку информации об удалённых объектах с помощью лазерной сканирующей системы.

Основные характеристики системы:

    Система LIDAR позволяет с воздушного судна измерять расстояния до всех видимых объектов на поверхности земли.

    За одну секунду выполняется порядка 300 тысяч измерений (точек) на поверхности объектов.

    Съёмка территории ведётся полосами с углом обзора порядка 60 градусов.

    Результат лазерного сканирования: массив измерений (облако точек), представленный в единой системе координат. После постобработки - топопланы масштаба от 1:1000, трёхмерные цифровые модели местности.

    Точность данных, полученных системой LIDAR, зависит от используемого оборудования, GPS-обстановки и условий полёта.


Преимущества технологии ВЛС:

    Съёмка с высоты полёта позволяет получить недоступные с земли элементы объектов.

    Из-за минимума горизонтальных «слепых зон» - высокая детальность материалов.

    Возможность получения истинного рельефа таких труднодоступных и чересчур обременительных для съемки традиционными методами мест как: тундра, пустыня, заснеженная территория.

    Быстрое получение результата сканирования: массив измерений (облако точек), представленный в единой системе координат. После постобработки – топографические планы масштаба от 1:1000 и трёхмерные цифровые модели местности.

Мобильное лазерное сканирование

Допустим, необходимо выполнить не привычную планово-высотную съёмку, а полноценную трёхмерную съёмку, например, городского района. ВЛС быстро и качественно позволяет снимать наклонно-горизонтальные поверхности площадных объектов. При этом, фронтальные поверхности объектов снимутся значительно хуже. Конечно же можно дополнить съёмку, применив технологии НЛС. Но у этих технологий существенная разница в производительности. Решение простое: система LIDAR немного трансформируется и устанавливается на автомобиль. При этом, либо увеличивается число сканирующих лазерных сенсоров, либо используется один широкоугольный. Как и в ВЛС, сканирование осуществляется в постоянном движении и реальном времени. Это и есть мобильное лазерное сканирование (МЛС). Система может быть установлена на любое передвижное средство, например, поезд.

Методика МЛС позволяет проводить съемку всех объектов по курсу движения транспортного средства. Здания, сооружения, дорожное полотно, уличная инфраструктура, ЛЭП, мосты, туннели и т.д. Принципы и точность съёмки схожы с ВЛС.

Работы могут производиться в любое время суток не мешая транспортному потоку. Средняя скорость движения съемочного комплекса – до 70 км/час. Так, поезд, оборудованный подобной системой, способен в течение суток отснять около 1200 погонных километров путей (в одном направлении) с шириной полосы сканирования в десятки метров. Автомобилю достаточно 2-3 раза проехать по улице, что бы получить не только дорожную инфраструктуру улицы, но и прилегающие к ней территории.

МЛС используется в следующих сферах:

    дорожное хозяйство;

    электроэнергетика;

    градостроительство

    территориальное планирование;

    жилищно-коммунальное хозяйство;

    трубопроводное строительство;

    экологический мониторинг;

    мониторинг чрезвычайных ситуаций.

Преимущества технологии МЛС:

    Мобильная сканирующая система равномерно покрывает измерениями (облаком точек) всё, что попадает в поле зрения.

    Работы могут производиться в любое время суток, при этом, не мешая транспортному потоку.

    Средняя скорость движения съемочного комплекса довольно велика и составляет 60-70 км/час.

    Применение МЛС позволяет экономить время и трудозатраты при съемке протяженных объектов и городских кварталов.

    Технология позволяет производить первые измерения по облаку точек уже спустя несколько часов после съемки.

ВЛС и МЛС хороши для топосъёмки больших территорий. На объектах, где их применение нецелесообразно (из-за низкой точности, внутри зданий и сооружений, в местах с повышенной детализацией), успешно применяется технология наземного лазерного сканирования (НЛС). Методы НЛС позволяют выполнять съёмку не только снаружи, но и внутри сложных инженерных сооружений.

НЛС на сегодняшний день, - самый оперативный способ получения точной и полной информации об геометрических параметрах объекта. Наземное сканирование применяется при съёмке зданий, мостов, путепроводов, эстакад, надземных коммуникаций, цехов заводов, энергетических объектов, линейных объектов, для построения модели рельефа и топографической съёмки локальных участков земли.

Сканирование производится с точки установки штатива (станции), обзор составляет 360*320 градусов. Как правило, сканирование объекта выполняется с нескольких станций. Используя методы классической геодезии, данные ЛС приводятся к единой системе координат. В зависимости от условий, одним сканером за один день на объекте можно выполнить порядка сотни станций. На каждой станции в автоматическом режиме выполняются десятки миллионов измерений объекта с точностью 1-5 мм. Миллиметровая плотность покрытия измерениями (точками) позволяет детализировать в итоговой съёмке (облаке точек) даже самые малые элементы объекта.

Результат съёмки: облако точек, состоящее из миллиардов точных измерений исследуемого объекта в заданной системе координат. Никакими иными методами подобного результата невозможно достичь за соизмеримые сроки исполнения. Облако точек – это реальная трёхмерная модель объекта съёмки. Облако точек можно использовать для производства любых линейных и угловых измерений, выполняя их на обычном компьютере. Векторизацией облака точек можно получить 3D-модель объекта в привычной среде проектирования, например - в AutoCAD или AVEVA.

Технология НЛС применима в следующих областях:

    энергетика;

    нефтегазовая отрасль;

    промышленное производство;

    добыча полезных ископаемых;

    промышленное и гражданское строительство;

    инженерные коммуникации;

    железные и автомобильные дороги;

    архитектура, археология, сохранение памятников и исторических объектов.

НЛС незаменимо при проектировании и реконструкции объектов, поскольку является источником достоверной информации об объекте и окружающей его обстановке.

Преимущества технологии НЛС:

    Результат лазерного сканирования: огромный массив измерений (облако точек), представленный в единой системе координат. После постобработки – трёхмерные цифровые модели, сечения и чертежи в масштабах от 1:1.

    Высочайшая детальность получаемых материалов.

    Высокая скорость сбора данных.

    Все данные поступают сразу в цифровом виде.

    Точность регистрации сканов в общем облаке точек порядка 10 мм.

    Съемка происходит дистанционно, что исключает риск травмирования персонала в опасных зонах на производстве.

Сегодня большинство программ для проектирования имеют возможность загружать и использовать облака точек для моделирования и отслеживания коллизий в процессе строительства. По облаку точек, полученному в итоге лазерной съёмки, можно выполнить моделирование элементов объекта с представлением результатов в любую среду автоматизированного проектирования: Autodesk, AVEVA, Bentley, ESRI, Intergraph и другие.

Примеры правильного выбора типа лазерной съёмки

    Можно ли по данным МЛС получить фасадные чертежи? Можно, однако, точность и плотность не соответствуют требованиям для фасадной съёмки. К тому же, привлекаемое оборудование и ресурсы будут в 7 раз дороже ресурсов НЛС. Необходимо использовать технологию НЛС.

    Можно ли с помощью технологии НЛС получить план масштаба 1:2000 будущего водохранилища Богучанской ГЭС? Можно, но это будет неэффективно. Самолёт с оборудованием ВЛС на борту отсканирует быстрее при существенном удешевлении стоимости работ за счёт низких трудозатрат.

    Какую применить технологию для получения плана масштаба 1:500 ровного земельного участка 50Га под будущее строительство? Для этих работ любое ЛС будет малоэффективным по трудозатратам. Такие объекты выполняются обычными топографами, используя методы классической геодезии.

    Можно ли при восстановлении исполнительной документации оборудования цеха газового предприятия обойтись простой геодезией и не использовать дорогие лазерные сканеры? Можно, но такая работа по трудозатратам будет в тысячи раз ёмче и сопряжена со множеством человеческих ошибок. В итоге получится существенное удорожание работ.

    А есть ли такие проекты, в которых возможно совместное использование всех трёх технологий ЛС? Да, возможно любое сочетание, поскольку, работа выполняется в едином координатном пространстве. Например, используя технологию ВЛС, с самолета отсканировали территорию города Пенза, затем, двигаясь по улицам, с помощью технологии МЛС с автомашины сканировали фасады зданий и объекты инфраструктуры, затем, посредством технологии НЛС, со штатива сканировали внутренние помещения домов и сооружений. Посредством геодезических методов, все три массива измерений приводятся к единой СК и обобщённый массив станет детальной трехмерной моделью города на дату производства измерительных работ (съёмки).

Развитие геодезической техники привело к появлению технологии 3D лазерного сканирования. На сегодняшний день это один из самых современных и производительных методов измерений.

Наземное лазерное сканирование — бесконтактная технология измерения 3D поверхностей с использованием специальных приборов, лазерных сканеров. По отношению к традиционным оптическим и спутниковым геодезическим методам характеризуется высокой детальностью, скоростью и точностью измерений. 3D лазерное сканирование применяется в архитектуре, промышленности, строительстве дорожной инфраструктуры, геодезии и маркшейдерии, археологии.

Классификация и принцип действия 3D лазерных сканеров

3D лазерный сканер – прибор, который, производя до миллиона измерений в секунду, представляет объекты в виде набора точек с пространственными координатами. Полученный массив данных, называемый облаком точек, может быть впоследствии представлен в трехмерном и двухмерном виде, а также использован для измерений, расчетов, анализа и моделирования.

По принципу действия лазерные сканеры разделяют на импульсные (TOF), фазовые и триангуляционные. Импульсные сканеры рассчитывают расстояние как функцию времени прохождения лазерного луча до измеряемого объекта и обратно. Фазовые оперируют со сдвигом фаз лазерного излучения, в триангуляционных 3D сканерах приемник и излучатель разнесены на определенное расстояние, которое используется для решения треугольника излучатель-объект-приемник.

Основные параметры лазерного сканера – дальность, точность, скорость, угол обзора.

По дальности действия и точности измерений 3D сканеры разделяются на:

  • высокоточные (погрешность меньше миллиметра, дальность от дециметра до 2-3 метров),
  • среднего радиуса действия (погрешность до нескольких миллиметров, дальность до 100 м),
  • дальнего радиуса действия (дальность сотни метров, погрешность от миллиметров до первых сантиметров),
  • маркшейдерские (погрешность доходит до дециметров, дальность более километра).

Последние три класса по способности решать различные типы задач можно отнести к разряду геодезических 3D-сканеров. Именно геодезические сканеры используются для выполнения работ по лазерному сканированию в архитектуре и промышленности.

Скорость действия лазерных сканеров определяется типом измерений. Как правило, наиболее скоростные фазовые, на определенных режимах скорость которых достигает 1 млн измерений в секунду и более, импульсные несколько медленнее, такие приборы оперируют со скоростями в сотни тысяч точек в секунду.

Угол обзора – ещё один немаловажный параметр, определяющий количество данных, собираемых с одной точки стояния, удобство и конечную скорость работы. В настоящее время все геодезические лазерные сканеры имеют горизонтальный угол обзора в 360°, вертикальные углы варьируются от 40-60° до 300°.

Характеристики лазерного сканирования

Хотя первые сканирующие системы появились относительно недавно, технология лазерного сканирования показала свою высокую эффективность и активно вытесняет менее производительные методы измерений.

Преимущества наземного лазерного сканирования:

  • высокая детализация и точность данных;
  • непревзойденная скорость съемки (от 50 000 до 1 000 000 измерений в секунду);
  • безотражательная технология измерений, незаменимая при выполнении работ по лазерному сканированию труднодоступных объектов, а также объектов, где нахождение человека нежелательно (невозможно);
  • высокая степень автоматизации, практически исключающая влияние субъективных факторов на результат лазерного сканирования;
  • совместимость полученных данных с форматами программ по 2D и 3D проектированию ведущих мировых производителей (Autodesk , Bentley , AVEVA , Intergraph и др.);
  • изначальная «трехмерность» получаемых данных;
  • низкая доля полевого этапа в общих трудозатратах.

Применение 3D лазерного сканирования выгодно по нескольким причинам:

  • проектирование с использованием трехмерных данных геодезических изысканий не только упрощает сам процесс проектирования, но главным образом повышает качество проекта, что минимизирует последующие расходы на этапе строительства,
  • все измерения проводятся крайне быстрым и точным методом, исключающим человеческий фактор, степень достоверности информации повышается в разы, уменьшается вероятность ошибки,
  • все измерения проводятся безотражательным способом, дистанционно, что увеличивает безопасность работы; например, нет необходимости перекрывать автостраду для съемки поперечных сечений, возводить строительные леса для измерения фасада,
  • технология лазерного сканирования интегрируется с большинством САПР (Autodesk AutoCAD , Revit , Bentley Microstation), а также с «тяжелыми» средствами проектирования, такими как AVEVA PDMS , E3D , Intergraph SmartPlant , Smart3D, PDS.
  • результат изысканий получается в различных видах, от выходного формата зависит цена лазерного сканирования и сроки работ:
    • трехмерное облако точек (определенные САПР работают уже с этими данными),
    • трехмерная модель (геометрическая, интеллектуальная),
    • стандартные двумерные чертежи,
    • трехмерная поверхность (TIN, NURBS).

Процесс лазерного сканирования состоит из трех основных этапов:

  • рекогносцировка на местности,
  • полевые работы,
  • камеральные работы, обработка данных

Применение лазерного сканирования

Работы по лазерному сканированию в России на коммерческой основе выполняются с десяток лет. Несмотря на то, что технология достаточно универсальна, за это время определился круг основных применений.

Наземное лазерное сканирование в геодезии, маркшейдерии применяется для съемки топографических планов крупного масштаба, съемки ЦМР. Наибольшая эффективность достигается при лазерном сканировании карьеров, открытых выработок, шахт, штолен, тоннелей. Скорость метода позволяет оперативно получать данные о ходе земляных работ, рассчитывать объемы вынутой породы, осуществлять геодезический контроль хода строительства, следить за устойчивостью бортов карьера, мониторить оползневые процессы. Подробнее см. в статье

50 лет назад для составления точных схем и чертежей требовалось много людей и большой набор аппаратуры. С появлением тахеометров, сложные объекты стали переносить на чертежи в течение нескольких недель. GPS-приемники упростили эти задачи, но всё же недостаточно.

Сейчас на рынке стали доступны лазерные сканеры. С помощью этих устройств можно проводить геосъемку любой сложности и получать результаты за 1–2 дня. Как все дальномерные лазерные устройства 3D-сканер, получает необходимые данные методом измерения расстояния до объекта, горизонтальных и вертикальных углов. Этот процесс полностью автоматизирован.

Лазерный сканер ставят на штатив и приводится в рабочее положение. Затем оператор на подключенном компьютере задает границы работ и запускает лазерное сканирование . Дальше всё делает автоматика, геодезист только контролирует процесс.

Что такое лазерный сканер

Основной инструмент геодезиста при лазерной геосъемке – сканер.
Это компактная конструкция, ее габариты соответствуют размерам тахеометра.

Сканеры различаются по точности, дальности действия лазера и прочности корпуса. Для подсчетов объемов выемки грунта важным фактором становится дальность действия и степень защиты от плохих погодных условий.

Если речь идет о съемке фасадов жилых зданий, объектов культурного наследия или промышленных комплексов, то главное – точность сканирования и детализация.

Лазерный сканер дальномером вычисляет расстояние до частей объекта и преобразует их в облако точек или 3D-модель. Готовая компьютерная схема выглядит как полноценное цифровое фото, которым можно манипулировать на компьютере.

Следующий этап обработки зависит от указаний заказчика. Могут понадобиться разрезы, профили, развертка участков и элементов, плоские чертежи, исполнительные съемки для подтверждения объемов и иные материалы. Важно заранее составить техническое задание, в котором будут указаны все детали, чтобы не пришлось вызывать специалиста несколько раз.

В последнее время все большее применение находит технология наземного лазерного сканирования. Многие современные задачи проектирования и строительства, эксплуатации зданий и сооружений требуют представления пространственных данных, точно и полно описывающих рельеф, ситуацию, взаимное расположение частей зданий и сооружений. Использование традиционных для геодезии методов и инструментов позволяет решать большинство задач, однако существуют ограничения, связанные с тяжелыми условиями видимости, со скоростью сбора и обработки получаемых при помощи электронных тахеометров данных.

Появление GNSS-технологий, позволяющих буквально за считанные минуты получить точные координаты местоположения точек (режим RTK), а также безотражательных тахеометров, имеющих возможность работать без применения специальных отражателей, стало важным технологическим прорывом в области геодезических измерений. Однако применение спутниковых геодезических приемников и безотражательного тахеометра не позволяло с максимальной точностью описывать объект съемки и строить полноценную цифровую модель - координатные данные были точными, но слишком разреженными. На построение трехмерных цифровых моделей фасадов зданий или чертежей цехов требовались значительные временные ресурсы, работы получались трудоемкими и дорогостоящими. С появлением новой технологии - ЛАЗЕРНОГО СКАНИРОВАНИЯ - задача построения 3D цифровых моделей значительно упростилась.

Наземное лазерное сканирование является самым оперативным и высокопроизводительным средством получения точной и наиболее полной информации о пространственном объекте: памятнике архитектуры, промышленном сооружении и промышленной площадке, смонтированном технологическом оборудовании. Суть технологии сканирования заключается в определении пространственных координат точек объекта. Процесс реализуется посредством измерения расстояния до всех определяемых точек с помощью фазового или импульсного безотражательного дальномера. Измерения производятся с очень высокой скоростью - тысячи, сотни тысяч, а порой и миллионы измерений в секунду. На пути к объекту импульсы лазерного дальномера сканера проходят через систему, состоящую из одного подвижного зеркала, которое отвечает за вертикальное смещение луча. Горизонтальное смещение луча лазера производится путем поворота верхней части сканера относительно нижней, жестко прикрепленной к штативу. Зеркало и верхняя часть сканера управляются прецизионными сервомоторами. В конечном итоге именно они обеспечивают точность направления луча лазера на снимаемый объект. Зная угол разворота зеркала и верхней части сканера в момент наблюдения и измеренное расстояние, процессор вычисляет координаты каждой точки.

Все управление работой прибора осуществляется с помощью портативного компьютера с набором программ или с помощью панели управления, встроенной в сканер. Полученные координаты точек из сканера передаются в компьютер и накапливаются в базе данных компьютера или самого сканера, создавая так называемое облако точек.

Сканер имеет определенную область обзора, или другими словами, поле зрения. Предварительное наведение сканера на исследуемые объекты происходит либо с помощью встроенной цифровой фотокамеры, либо по результатам предварительного разреженного сканирования. Изображение, получаемое цифровой камерой, передается на экран компьютера, и оператор осуществляет визуальный контроль ориентирования прибора, выделяя необходимую область сканирования.

Работа по сканированию часто проходит в несколько сеансов из-за формы объектов, когда все поверхности просто не видны с одной точки наблюдения. Самый простой пример - четыре стены здания. Полученные с каждой точки стояния сканы совмещаются друг с другом в единое пространство в специальном программном модуле. На стадии полевых работ необходимо предусмотреть зоны взаимного перекрытия сканов. При этом перед началом сканирования в этих зонах размещают специальные мишени. По координатам этих мишеней и будет происходить процесс «сшивки». Можно совместить облака точек без мишеней, используя характерные точки снимаемого объекта. Лазерное сканирование предоставляет возможность получить максимум информации о геометрической структуре объекта. Его результатом являются 3D модели с высокой степенью детализации, плоские чертежи и разрезы.

Наземное лазерное сканирование значительно отличается от других методов сбора пространственной информации. Среди отличий выделим три основных:

  • в технологии полностью реализован принцип дистанционного зондирования, позволяющий собирать информацию об исследуемом объекте, находясь на расстоянии от него, т.е. на объекте не надо устанавливать никаких дополнительных устройств и приспособлений (марок, отражателей и т.п.);
  • по полноте и подробности получаемой информации с лазерным сканированием не может сравниться ни один из ранее реализованных методов, плотность и точность определяемых на поверхности объекта точек может исчисляться долями миллиметра;
  • лазерное сканирование отличается непревзойденной скоростью - до нескольких сотен тысяч измерений в секунду

Благодаря своей универсальности и высокой степени автоматизации процессов измерений лазерный сканер является не просто геодезическим прибором, лазерный сканер - это инструмент оперативного решения самого широкого круга прикладных инженерных задач.

Сама технология лазерного сканирования открывает целый ряд новых, ранее недоступных возможностей. Связано это, прежде всего, с более полным использованием современных компьютерных технологий. Получаемые результаты в виде облака точек или трехмерной модели можно быстро передвигать, масштабировать и вращать. Есть возможность виртуального путешествия по изображению с записью в стандартный мультимедийный файл для дальнейшего показа. Такого полного представления об объекте не может дать ни один другой метод. При этом мы работаем не просто с изображением, а именно с моделью, сохраняющей полное геометрическое соответствие форм и размеров реального объекта. Такое положение дел обеспечивает возможность проведения измерений реальных расстояний между любыми точками или элементами модели. Несмотря на исключительную новизну, технология предусматривает возможность автоматического или полуавтоматического получения информации и документов в привычном виде - чертежи профилей, поперечников, планы, схемы.Возможность обмена через общепринятые форматы графических данных позволяет легко встроить технологию лазерного сканирования в схему уже используемого программного обеспечения.

Технология лазерного сканирования открывает новые возможности и дает необходимую информацию для развития современного метода трехмерного проектирования.

Где можно использовать лазерное сканирование?

Основные сферы применения трехмерного сканирования:

  • промышленные предприятия
  • строительство и архитектура
  • дорожная съемка
  • горное дело
  • мониторинг зданий и сооружений
  • документирование чрезвычайных ситуаций

Мы предлагаем широкий спектр . Более того, Вы можете получить исчерпывающую информацию по всем аспектам приобретения, использования и обслуживания у наших специалистов по контактной информации.

При разработке данного материала были использованы материалы

Несмотря на то, что первые наземные 3D сканеры появились еще в прошлом веке, пока нет основания утверждать, что технология лазерного 3D сканирования широко используется в геодезии. В качестве главных причин, наверное, нужно назвать пока еще высокую стоимость таких систем и недостаток информации о том, как их эффективно использовать в тех или иных приложениях. Тем не менее, интерес к этой технологии и ее востребованность на рынке геодезического оборудования растут с каждым годом в геометрической прогрессии.


Что такое трехмерный лазерный сканер?

По типу получаемой информации прибор во многом схож с тахеометром. Аналогично последнему, 3D сканер при помощи лазерного дальномера вычисляет расстояние до объекта и измеряет вертикальныe и горизонтальные углы, получая XYZ-координаты. Отличие от тахеометра заключается в том, что ежедневная съемка при помощи наземного лазерного 3D сканера – это десятки миллионов измерений. Получение аналогичного объема информации с тахеометра займет не одну сотню лет…

Первоначальный результат работы лазерного 3D сканера представляет собой облако точек. В процессе съемки для каждой из них записываются три координаты (XYZ) и численный показатель интенсивности отраженного сигнала. Он определяется свойствами поверхности, на которую падает лазерный луч. Облако точек раскрашивается в зависимости от степени интенсивности и после сканирования выглядит как трехмерное цифровое фото. Большинство современных моделей лазерных сканеров имеют встроенную видео- или фотокамеру, благодаря чему облако точек может быть также окрашено в реальные цвета.

В целом схема работы с прибором заключается в следующем. Лазерный сканер устанавливается напротив снимаемого объекта на штатив. Пользователь задает требуемую плотность облака точек (разрешение) и область съемки, затем запускает процесс сканирования. Для получения полных данных об объекте, как правило, приходится выполнять данные операции с нескольких станций (позиций).

Затем выполняется обработка первоначальных данных, полученных со сканера, и подготовка результатов измерений в том виде, в котором они необходимы заказчику. Данный этап не менее важен, чем проведение полевых работ, и зачастую более трудоемок и сложен. Профили и сечения, плоские чертежи, трехмерные модели, вычисления площадей и объемов поверхностей – все это, а также другую необходимую информацию можно получить в качестве конечного результата работы со сканером.

Где можно использовать лазерное сканирование?
Основные сферы применения трехмерного сканирования:
- промышленные предприятия
- строительство и архитектура
- дорожная съемка
- горное дело
- мониторинг зданий и сооружений
- документирование чрезвычайных ситуаций

Этот список далеко не полный, поскольку с каждым годом пользователи лазерных сканеров выполняют все больше уникальных проектов, которые расширяют сферы применения технологии.

Лазерное сканирование от Leica Geosystems – история лазерных сканеров
История лазерных сканеров Leica началась еще в 90-х годах прошлого века. Первая модель 2400, тогда еще под маркой Cyra, была выпущена в 1998. В 2001 году компания Cyra вошла в концерн Leica Geosystems в подразделение HDS (High-Definition Surveying). Сейчас, по прошествии 14 лет, компания Leica Geosystems представляет на рынке линейку из двух сканирующих систем.

Как уже было сказано выше, лазерное 3D сканирование применяется в совершенно разных областях, и универсального сканера, который эффективно решал бы все задачи, не существует.
Для съемки промышленных объектов, где не требуется большой дальности, но модель должна быть очень детальной (то есть нужен точный высокоскоростной прибор), оптимальным будет лазерный сканер Leica ScanStation P30 : дальность до 120 м, скорость до 1 000 000 точек в секунду.

Совершенно другие требования предъявляются к сканеру, если речь идет о съемке открытых разработок и складов сыпучих материалов с целью подсчета объемов. Здесь достаточно сантиметровой точности дальномера, а на первый план выходит дальность съемки и защищенность от погодных условий и пыли. Идеальный прибор для сканирования в таких условиях – Leica HDS8810 с дальностью до 2 000 м и пылевлагозащищенностью IP65. Кроме того, этот прибор – единственный на рынке сканирующих систем, который работает в температурном диапазоне от -40 до +50 град. То есть HDS8810 – лазерный сканер, который работает при любых погодных условиях.

Ключевая модель подразделения HDS компании Leica Geosystems – это Leica ScanStation P40 . Знаменитая и самая популярная в мире линейка ScanStation, история которой началась еще в 2006 году, пополнилась в апреле 2015 года сканером P40. Точность и скорость P40 унаследовал от предыдущей модели, но стал более дальнобойным, а качество данных стало еще лучше. По спектру решаемых задач этот прибор действительно лидер в своем сегменте. Неслучайно, несмотря на «молодость» этой модели, она уже приобрела широкую популярность в мире.


Программное обеспечение для обработки данных лазерного сканирвания (облака точек)
Нельзя не сказать несколько слов о программном обеспечении для обработки данных, полученных со сканера. Этой составляющей системы трехмерного лазерного сканирования потенциальные заказчики уделяют незаслуженно мало внимания, хотя обработка данных, получение конечного результата работы - это не менее важные этапы проекта, чем полевые работы. Спектр программного обеспечения Leica HDS – действительно самый широкий на рынке лазерного сканирования.

Главный элемент спектра – это, конечно, комплекс Cyclone . Эта модульная программная система по праву считается самой популярной в мире и обладает большим пакетом инструментов для обработки данных, получаемых с помощью сканера. Есть у Leica и ряд более узкоспециализированных программ. Для тех, кто привык работать в традиционных САПР, существует серия программных продуктов Leica CloudWorx , встраиваемых в AutoCAD, MicroStation, AVEVA и SmartPlant, что позволяет пользователям данных программ работать непосредственно с облаками точек. 3DReshaper строит высококачественные триангуляционные модели поверхностей объектов и позволяет проводить мониторинг деформаций путем сравнения съемок объекта, сделанных в разные периоды времени. В линейке программ Leica HDS есть даже ПО для обработки данных сканирования в криминалистике.

Таким образом, лазерное сканирование от Leica Geosystems – это целый комплекс программных и аппаратных решений. Под каждую, пусть даже узкоспециализированную задачу, у компании Leica найдется комбинация «сканер + программа», которая поможет решить эту задачу максимально эффективно.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама