THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Квадратным трехчленом называется многочлен вида ax 2 + bx + c , где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Коэффициент а называют старшим коэффициентом , c свободным членом квадратного трехчлена.

Примеры квадратных трехчленов:

2 x 2 + 5 x + 4 (здесь a = 2, b = 5, c = 4)

x 2 – 7x + 5 (здесь a = 1, b = -7, c = 5)

9x 2 + 9x – 9 (здесь a = 9, b = 9, c = -9)

Коэффициент b или коэффициент c либо оба коэффициента одновременно могут быть равны нулю. Например:

5 x 2 + 3 x (здесь a = 5, b = 3, c = 0, поэтому значение c в уравнении отсутствует).

6x 2 – 8 (здесь a = 6, b = 0, c = -8)

2x 2 (здесь a = 2, b = 0, c = 0)

Значение переменной, при котором многочлен обращается в ноль, называют корнем многочлена .

Чтобы найти корни квадратного трехчлена ax 2 + bx + c , надо приравнять его к нулю –
то есть решить квадратное уравнение ax 2 + bx + c = 0 (см.раздел "Квадратное уравнение").

Разложение квадратного трехчлена на множители

Пример:

Разложим на множители трехчлен 2x 2 + 7x – 4.

Мы видим: коэффициент а = 2.

Теперь найдем корни трехчлена. Для этого приравняем его к нулю и решим уравнение

2x 2 + 7x – 4 = 0.

Как решается такое уравнение – см. в разделе «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу назовем результат вычислений. Наш трехчлен имеет два корня:

x 1 = 1/2, x 2 = –4.

Подставим в нашу формулу значения корней, вынеся за скобки значение коэффициента а , и получим:

2x 2 + 7x – 4 = 2(x – 1/2) (x + 4).

Полученный результат можно записать иначе, умножив коэффициент 2 на двучлен x – 1/2:

2x 2 + 7x – 4 = (2x – 1) (x + 4).

Задача решена: трехчлен разложен на множители.

Такое разложение можно получить для любого квадратного трехчлена, имеющего корни.

ВНИМАНИЕ!

Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет один корень, но при разложении трехчлена этот корень принимают как значение двух корней – то есть как одинаковое значение x 1 и x 2 .

К примеру, трехчлен имеет один корень, равный 3. Тогда x 1 = 3, x 2 = 3.

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Вконтакте

У него – квадрат, а состоит он из трех слагаемых (). Вот и получается – квадратный трехчлен.

Примеры не квадратных трехчленов:

\(x^3-3x^2-5x+6\) - кубический четырёхчлен
\(2x+1\) - линейный двучлен

Корень квадратного трехчлена:

Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)

Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).

\(D=4-4\cdot1=0\)
\(x=\frac{2-0}{2}=\frac{2}{2}=1\)

Готово. Корень равен \(1\).

Разложение квадратного трёхчлена на :

Квадратный трехчлен \(ax^2+bx+c\) можно разложить как \(a(x-x_1)(x-x_2)\), если уравнения \(ax^2+bx+c=0\) больше нуля \(x_1\) и \(x_2\) - корни того же уравнения).


Например , рассмотрим трехчлен \(3x^2+13x-10\).
У квадратного уравнения \(3x^2+13x-10=0\) дискриминант равен 289 (больше нуля), а корни равны \(-5\) и \(\frac{2}{3}\). Поэтому \(3x^2+13x-10=3(x+5)(x-\frac{2}{3})\). В верности этого утверждения легко убедится – если мы , то получим исходный трехчлен.


Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.

Например , рассмотрим трехчлен \(x^2+6x+9\).
У квадратного уравнения \(x^2+6x+9=0\) дискриминант равен \(0\), а единственный корень равен \(-3\). Значит, \(x^2+6x+9=(x+3)^2\) (здесь коэффициент \(a=1\), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по .

Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.

Например , у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.

Пример . Разложите на множители \(2x^2-11x+12\).
Решение :
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)

\(D=11^2-4 \cdot 2 \cdot 12=121-96=25>0\)
\(x_1=\frac{11-5}{4}=1,5;\) \(x_2=\frac{11+5}{4}=4.\)

Значит, \(2x^2-11x+12=2(x-1,5)(x-4)\)
Ответ : \(2(x-1,5)(x-4)\)

Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).


Пример . (Задание из ОГЭ) Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac{-33-17}{10}=-5\)
\(x_2=\frac{-33+17}{10}=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ : \(-1,6\)

Мир погружён в огромное количество чисел. Любые исчисления происходят с их помощью.

Люди учат цифры для того, чтобы в дальнейшей жизни не попадаться на обман. Необходимо уделять огромное количество времени, чтобы быть образованным и рассчитать собственный бюджет.

Вконтакте

Математика - это точная наука, которая играет большую роль в жизни. В школе дети изучают цифры, а после, действия над ними.

Действия над числами бывают совершенно разными: умножение, разложение, добавление и прочие. Помимо простых формул, в изучении математики используют и более сложные действия. Существует огромное количество формул, по которым узнают любые значения.

В школе, как только появляется алгебра, в жизнь школьника добавляются формулы упрощения. Бывают уравнения, когда неизвестных числа два, но найти простым способом не получится. Трёхчлен - соединение трёх одночленов, с помощью простого метода отнимания и добавления. Трёхчлен решается с помощью теоремы Виета и дискриминанта.

Формула разложения квадратного трёхчлена на множители

Существуют два правильных и простых решения примера :

  • дискриминант;
  • теорема Виета.

Квадратный трёхчлен имеет неизвестный в квадрате, а также число без квадрата. Первый вариант для решения задачи использует формулу Виета. Это простая формула , если цифры, что стоят перед неизвестным, будут минимальным значением.

Для других уравнений, где число стоит перед неизвестным, уравнение необходимо решать через дискриминант. Это более сложное решение, но используют дискриминант намного чаще, нежели теорему Виета.

Изначально, для нахождения всех переменных уравнения необходимо возвести пример к 0. Решение примера можно будет проверить и узнать правильно ли подстроены числа.

Дискриминант

1. Необходимо приравнять уравнение к 0.

2. Каждое число перед х будет названо числами a, b, c. Так как перед первым квадратным х нет числа, то оно приравнивается к 1.

3. Теперь решение уравнения начинается через дискриминант:

4. Теперь нашли дискриминант и находим два х. Разница заключается в том, что в одном случае перед b будет стоять плюс, а в другом минус:

5. По решению два числа получилось -2 и -1. Подставляем под первоначальное уравнение:

6. В этом примере получилось два правильных варианта. Если оба решения подходят, то каждое из них является истинным.

Через дискриминант решают и более сложные уравнение. Но если само значение дискриминанта будет меньше 0, то пример неправильный. Дискриминант при поиске всегда под корнем, а отрицательное значение не может находиться в корне.

Теорема Виета

Применяется для решения лёгких задач, где перед первым х не стоит число, то есть a=1. Если вариант совпадает, то расчёт проводят через теорему Виета.

Для решения любого трёхчлена необходимо возвести уравнение к 0. Первые шаги у дискриминанта и теоремы Виета не отличаются.

2. Теперь между двумя способами начинаются отличия. Теорема Виета использует не только «сухой» расчёт, но и логику и интуицию. Каждое число имеет свою букву a, b, c. Теорема использует сумму и произведение двух чисел.

Запомните! Число b всегда при добавлении стоит с противоположным знаком, а число с остаётся неизменным!

Подставляя значения данные в примере, получаем:

3. Методом логики подставляем наиболее подходящие цифры. Рассмотрим все варианты решения:

  1. Цифры 1 и 2. При добавлении получаем 3, но если умножить, то не получится 4. Не подходит.
  2. Значение 2 и -2. При умножении будет -4, но при добавлении получается 0. Не подходит.
  3. Цифры 4 и -1. Так как в умножении стоит отрицательное значение, значит, одно из чисел будет с минусом. При добавлении и умножении подходит. Правильный вариант.

4. Остаётся только проверить, раскладывая числа, и посмотреть правильность подобранного варианта.

5. Благодаря онлайн-проверке мы узнали, что -1 не подходит по условию примера, а значит является неправильным решением.

При добавлении отрицательного значения в примере, необходимо цифру заносить в скобки.

В математике всегда будут простые задачи и сложные. Сама наука включает в себя разнообразие задач, теорем и формул. Если понимать и правильно применять знания, то любые сложности с вычислениями будут пустяковыми.

Математика не нуждается в постоянном запоминании. Нужно научится понимать решение и выучить несколько формул. Постепенно, по логическим выводам, можно решать похожие задачи, уравнения. Такая наука может с первого взгляда показаться очень тяжёлой, но если окунутся в мир чисел и задач, то взгляд резко изменится в лучшую сторону.

Технические специальности всегда остаются самыми востребованными в мире. Сейчас, в мире современных технологий, математика стала незаменимым атрибутом любой сферы. Нужно всегда помнить о полезных свойствах математики.

Разложение трёхчлена с помощью скобки

Кроме решения привычными способами, существует ещё один - разложение на скобки. Используют с применением формулы Виета.

1. Приравниваем уравнение к 0.

ax 2 + bx+ c = 0

2. Корни уравнения остаются такими же, но вместо нуля теперь используют формулы разложения на скобки.

ax 2 + bx+ c = a ( x – x 1) ( x – x 2)

2 x 2 – 4 x – 6 = 2 ( x + 1) ( x – 3)

4. Решение х=-1, х=3

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама