THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В силу неизвестности значений параметров регрессии неизвестными будут также и истинные значения отклонений , поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Графический метод . Существует несколько вариантов графического определения автокорреляции. Один из них состоит в анализе последовательно-временных графиков. По оси абсцисс откладывают время, либо порядковый номер наблюдения, а по оси ординат – отклонения (Рис. 1).

Естественно предположить, что на рис. 1, а - г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 1, д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 1, б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 1, б дополнить графиком зависимости от (рис. 2).

Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями.

Современные ППП решение задач построения регрессии дополняют графическим представлением результатов: график реальных колебаний зависимой переменной накладывается на график колебаний переменной по уравнению регрессии. Сопоставление этих графиков часто дает возможность выдвинуть гипотезу о наличии автокорреляции.

Метод рядов . Последовательно определяются знаки отклонений . Например,

(-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называют длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если рядов слишком много, то вероятна отрицательная автокорреляция. Пусть n – объем выборки, n1 и n2 – общее количество, соответственно, знаков «+» и «-», k – количество рядов.

При достаточно большом количестве наблюдений (n1 > 10,

n2 > 10) и отсутствии автокорреляции случайная величина k имеет асимптотически нормальное распределение с

; .

Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется.

Число определяется по таблице функции стандартного нормального распределения из равенства F() = . Например, при , =1,96 и при , =2,58.

Для небольшого числа наблюдений (n1 < 20, n2 < 20) разработаны таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем.

На пересечении строки n1 и столбца n2 определяются нижнее k1 и верхнее k2 значения при уровне значимости (Рис.3).

автокорреляция > 0 автокорреляция = 0 автокорреляция < 0

Kk1_________k1

Пример 1. Пусть изучается зависимость среднедушевых расходов на конечное потребление y от среднедушевого дохода х по данным некоторой страны за 16 лет.

Исходные (и расчетные для примера 3) данные (усл.ед.) представлены в следующей таблице:

Пусть исходная модель имеет вид: .

По исходным данным с использованием МНК получено следующее оцененное уравнение регрессии:


ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

В эконометрических исследованиях часто возникают ситуации, когда дисперсия остатков постоянна, но наблюдается статистическая зависимость остатков эконометрической модели между собой. Это явление называют автокорреляцией остатков .

В общем случае автокорреляция (последовательная корреляция) – это взаимосвязь упорядоченных во времени или в пространстве последовательных элементов соответственно временного или пространственного ряда данных.

На рис.5.5 показана зависимость Y от X , а также линия оцененного по этим данным уравнения парной линейной регрессии. Уже по рисунку видно, что оцененная регрессия не очень хороша: зависимость Y от X явно нелинейна. Если использовать проведенную регрессионную прямую, скажем, для прогнозирования дальнейшей динамики Y , результат будет неудовлетворительным.

Рис.5.5. К вопросу об автокорреляции остатков

Как же можно выразить формально неудовлетворительность полученного уравнения регрессии?

Мы видим, например, на рис.5.5, что в этом случае отклонения от линии регрессии не случайно распределены вокруг нее, а обладают определенной закономерностью. Эта закономерность, в частности, выражается в одинаковом, как правило, знаке каждых двух соседних отклонений . Это может являться следствием:

Неверной спецификации модели (ввиду нелинейного характера связи переменных);

Воздействием какого-то фактора, не включенного в модель в качестве объясняющей переменной. Величина такого неучтенного фактора может менять свою динамику в рассматриваемый период, отклоняясь в достаточно длительные промежутки времени в ту или иную сторону от своего среднего значения. Это, очевидно, может служить причиной длительных устойчивых отклонений зависимой переменной от линии регрессии.

Обе указанные причины свидетельствуют о том, что существует возможность улучшить уравнение регрессии путем оценивания какой-то новой нелинейной формулы или включения некоторой новой объясняющей переменной.

Зависимость, показанная на рис.5.5, очевидно, нелинейна. Но это – крайний случай. Далеко не всегда бывает столь же очевидно, что отклонения от регрессионной прямой имеют неслучайный, закономерный характер. Для оценки степени такой неслучайности необходимо ввести количественную меру .

Итак, одним из основных предполагаемых свойств отклонений наблюдаемых значений от регрессионной формулы является их статистическая независимость между собой .

Мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка , т.е. когда ошибки зависят только от ошибок предыдущего периода. Применение обычного метода наименьших квадратов в этом случае дает несмещенные и состоятельные оценки параметров, однако можно показать, что оценка дисперсии оказывается смещенной вниз , что может отрицательно сказаться при проверке гипотез о значимости оценок параметров. Образно говоря, МНК рисует более оптимистичную картину, чем есть на самом деле.



Следовательно, последствия автокорреляции состоят в том, что:

- оценка дисперсии при использовании МНК является заниженной .

Большинство тестов на наличие автокорреляции в ошибках модели (наиболее широко используется тест Дарбина-Уотсона ) используют следующую идею: если корреляция есть у ошибок , то она присутствует и в остатках , получаемых после применения к модели обычного метода наименьших квадратов.

То есть, поскольку значения ошибок остаются неизвестными ввиду неизвестности истинных значений параметров модели, то проверяется статистическая независимость их аналогов – отклонений . При этом проверяется обычно их некоррелированность (являющаяся необходимым, но недостаточным атрибутом независимости ), причем некоррелированность не любых, а соседних величин .

- соседние во времени значения (в случае временных рядов);

- соседние по возрастанию переменной Х значения (в случае перекрестных выборок).

Первого порядка ” означает, что остатки зависят только от остатков предыдущего периода.



Практически, однако, используют тесно связанную с статистику Дарбина-Уотсона, обозначаемую как DW-статистика или как d‑статистика , и рассчитываемую по формуле:

. (5.13)

.

Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то это означает их попарную независимость.

Однако регрессионные модели в экономике часто содержат стохастические зависимости между значениями случайных ошибок – автокорреляцию ошибок . Ее причинами являются: во-первых, влияние некоторых случайных факторов или опущенных в уравнении регрессии важных объясняющих переменных, которое не является однократным, а действует в разные периоды времени; во-вторых, случайный член может содержать составляющую, учитывающую ошибку измерения объясняющей переменной.

Применение к модели с автокорреляцией остатков обыкновенного МНК приведет к следующим последствиям :

1. Выборочные дисперсии полученных оценок коэффициентов будут больше по сравнению с дисперсиями по альтернативным методам оценивания, т.е. оценки коэффициентов будут неэффективны.

2. Стандартные ошибки коэффициентов будут оценены неправильно, чаще всего занижены, иногда настолько, что нет возможности воспользоваться для проверки гипотез соответствующими точными критериями – мы будем чаще отвергать гипотезу о незначимости регрессии, чем это следовало бы делать в действительности.

3. Прогнозы по модели получаются неэффективными.

На практике исследователь в этом случае поставлен перед проблемой тестирования наличия в модели автокорреляции, а также выявления причины автокорреляции при ее обнаружении: или в модели опущена существенная переменная, или структура ошибок зависит от времени. То есть, исследование остатков позволяет судить о правильности модели и ее пригодности для прогнозирования.

Простейшим способом проверки наличия автокорреляции является графическое изображение остатков e i . Возможно построение:

· графика временной последовательности, если остатки получены в разные моменты времени;

· графика зависимости остатков от значений , полученных по регрессии;



· графиков зависимости остатков от объясняющих переменных.

Если изображение остатков представляет собой горизонтальную полосу, это указывает на отсутствие каких-либо проблем, связанных с моделью. В противном случае в зависимости от вида и типа графика можно получить информацию о: неадекватности модели, ошибочности расчетов, необходимости включения в модель линейного или квадратичного члена от времени; наконец о непостоянстве дисперсии.

Ясно, что ошибки могут коррелировать по-разному, однако без нарушения общности можно рассматривать так называемую сериальную корреляцию (автокорреляцию), когда зависимость между ошибками, отстоящими на некоторое количество шагов s , называемое порядком корреляции (в частности, на один шаг, s =1), остается одинаковой, что хорошо проявляется визуально на графике в системе координат (e i ; e i - s ). Например, для s =1 на рис. 4.2 показаны отрицательная (слева) и положительная (справа) автокорреляция остатков. В экономических исследованиях чаще всего встречается положительная автокорреляция.


Рис. 4.2. Автокорреляция остатков

Более достоверным способом проверки существования автокорреляции является применение статистических критериев. Хорошо известны два – критерий знаков (относится к непараметрическим критериям) и критерий Дарбина-Уотсона .

Для проведения проверки по критерию знаков необходимо расположить остатки e i во временной последовательности, выписать их знаки, подсчитать число образующихся при этом серий n u из одинаковых знаков, а также n 1 – число остатков со знаком плюс и n 2 – число остатков со знаком минус. Далее определяется вероятность Pr (n u ) появления n u групп при нулевой гипотезе – последовательность остатков полностью случайна (автокорреляция отсутствует). Если Pr (n u ) < 1–a , где a – уровень доверия, то нулевая гипотеза отвергается.

Для ускорения расчетов для выборок с n 1 , n 2 не больше 20 составлены таблицы с критическими значениями n u при уровне доверия a =0,05.

Для больших выборок истинное распределение ошибок достаточно точно аппроксимируется нормальным со средним m =2n 1 n 2 /(n 1 +n 2)+1 и дисперсией s 2 =2n 1 n 2 (2n 1 n 2 – n 1 – n 2)/(n 1 + n 2) 2 /(n 1 + n 2 – 1), а величина z =(u m + 0,5)/s подчиняется нормированному нормальному распределению, следовательно, критические значения n u могут быть вычислены по формулам (m + z a s ) и (m z a s ), где z a определяется из условия F 0 (z a )=(1–a )/2 (значения даны в справочниках).

Пример . Получены остатки 0,6; 1,9; –1,8; –2,7; –2,9; 1,4; 3,3; 0,3; 0,8; 2,3; –1,4; –1,1, которые обнаруживают следующую последовательность знаков + + – – – + + + + + – –. Имеем n u =4, n 1 =7, n 2 =5. По таблице находим критические значения для n u : 3 и 11. Так как 3 < n u < 11, то нулевая гипотеза принимается, то есть остатки независимы и автокорреляция отсутствует.Ñ

Критерий знаков достаточно прост и не использует информацию о величине e i , и поэтому недостаточно эффективен.

Для проверки гипотезы о существовании линейной автокорреляции первого порядка, которая чаще всего имеет место на практике, предпочтителен критерий Дарбина-Уотсона , основанный на статистике:

(4.9)

Значения первых разностей ошибки в (4.9) будут обнаруживать тенденцию к уменьшению по абсолютной величине по сравнению с абсолютными значениями e i при положительной автокорреляции и к увеличению при отрицательной автокорреляции.

Для статистики d имеются верхний d U и нижний d L пределы уровня значимости. Различные статистические решения для нулевой гипотезы H 0: автокорреляция равна нулю, даны в табл. 4.3. При этом появляются области неопределенности, так как величина e i зависит не только от значений u , но и от значений последовательных X .

Следует отметить, что критерий Дарбина-Уотсона предназначен для моделей с детерминированными (нестохастическими) регрессорами X и не применим, например, в случаях, когда среди объясняющих переменных есть лаговые значения переменной Y .

Таблица 4.3

Области статистических решений для критерия Дарбина-Уотсона

Пример . Для примера 1 из п. 3.2 n =20, k =2 имеем табл. 4.4.

Значения d L и d U при уровне значимости 5% получим из справочника при n =20 и k =2: d L =1,10, d U =1,54.

Так как d >2, то вычисляем 4–d U =2,46 и 4–d L =2,90 и 2<d <4–d U .

Согласно табл. 4.3 гипотеза о равенстве нулю автокорреляции принимается. Ñ

Какой бы тест на автокорреляцию не использовался, необходимо помнить, что рекомендуется в случаях неопределенности (см. табл. 4.3) принимать гипотезу о наличии автокорреляции, поскольку это гарантирует от отрицательных последствий автокорреляции. В случаях же некорректного принятия гипотезы о равенстве нулю автокорреляции получаем модель, которая не может иметь удовлетворительного применения, хотя формально проходит все проверки.

Таблица 4.4

Вычисление значения статистики d

Ошибка e i e i 2 e i-1 ( e i -e i-1 ) 2 Ошибка e i e i 2 e i -1 (e i -e i -1) 2
-2,49 6,20 -0,68 0,46 -8,72 64,64
-1,86 3,46 -2,49 0,40 5,27 27,72 -0,68 35,40
31,93 1019,21 -1,86 1141,76 -5,29 27,93 5,27 111,51
-3,18 10,11 31,93 1232,71 -16,74 280,23 -5,29 131,10
-2,17 4,71 -3,18 1,02 8,94 79,87 -16,74 659,46
-18,38 337,64 -2,17 262,76 -3,57 12,74 8,94 156,50
-3,45 11,90 -18,38 222,90 5,18 26,79 -3,57 76,56
5,58 31,14 -3,45 81,54 7,72 59,60 5,18 6,45
-3,11 9,67 5,58 75,52 -0,85 0,72 7,72 73,44
-8,72 76,04 -3,11 31,47 4,85 23,47 -0,85 32,49
Сумма 2050,37 4397,66

Рассмотрим методы оценивания уравнения регрессии при наличии автокорреляции остатков.

Пусть имеем обобщенную линейную модель множественной регрессии в виде (4.3)-(4.7) с гомоскедастичными остатками .

Предположим, что остатки u i удовлетворяют следующему уравнению:

u i =ru i -1 +e i , i =2,...,n , (4.10)

E (e i )=0; (4.11)

Тогда несложно показать, что будет выполняться:

. (4.12)

Условие (4.12) является аналогом (4.5) и фактически означает гомоскедастичность дисперсии случайного члена (первая строчка) и автокорреляцию первого порядка (вторая строчка). Ясно, что если бы было известно значение r в (4.10) и затем в (4.12), то можно было бы применить ОМНК (элементы матрицы W в этом случае вычисляются согласно (4.12)) и получить эффективные оценки коэффициентов регрессии. Однако на практике значение r в большинстве случаев не известно, поэтому используются следующие методы оценивания регрессионной модели.

Метод 1 . Отказавшись от определения величины r , являющейся узким местом модели, статистически, можно положить r =0,5; 1 или -1. Однако даже грубая статистическая оценка будет, видимо, более эффективной, поэтому другой способ определения r с помощью статистики Дарбина-Уотсона r»1–0,5d . Применяя затем непосредственно ОМНК, получим оценки коэффициентов.

Метод 2 . Если значение r в (4.12) задано, то альтернативная схема отыскания оценок коэффициентов модели множественной регрессии суть (в целях упрощения, не нарушая общности, иллюстрация метода дана для случая парной регрессии):

а) Запишем уравнение модели для случая i и i –1:

Вычтем из обеих частей первого уравнения умноженное на r второе уравнение:

Метод 3 . Итеративная процедура Кохрейна-Оркатта.

а) Оценивается регрессия с исходными не преобразованными данными с помощью обыкновенного МНК.

б) Вычисляются остатки e i .

в) Оценивается регрессия e i =re i -1 +e i , и коэффициент при e i -1 дает оценку r .

г) С учетом полученной оценки r уравнение преобразовывается к виду (4.13), оценивание которого позволяет получить пересмотренные оценки коэффициентов b 0 и b 1 .

д) Вычисляются остатки регрессии (4.13) и процесс выполняется снова, начиная с этапа в).

Итерации заканчиваются, когда абсолютные разности последовательных значений оценок коэффициентов b 0 , b 1 и r будут меньше заданного числа (точности).

Подобная процедура оценивания порождает проблемы, касающиеся сходимости итерационного процесса и характера найденного минимума: локальный или глобальный.

Метод 4. Метод Хилдрета-Лу основан на тех же принципах, что и рассмотренный метод 3, но использует другой алгоритм вычислений. Здесь регрессия (4.13) оценивается МНК для каждого значения r из диапазона [-1, 1] с некоторым шагом внутри него. Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения (4.13), принимается в качестве оценки r , а коэффициенты регрессии определяются при оценивании уравнения (4.13) с использованием этого значения.

Метод 5. Дарбиным была предложена простая схема, дающая эффективные оценки коэффициентов:

а). Подставляя (4.10) в модель Y i =b 0 +b 1 X i +u i , получим с учетом u i - 1 = Y i -1 - b 0 - b 1 X i -1:

Y i =b 0 (1-r )+rY i -1 +b 1 (X i - rX i -1) + e i ,

где ошибка e i удовлетворяет (4.11). Применяя обыкновенный МНК к последней модели, получаем оценку r как коэффициента при Y i -1 .

б). Вычисляем значения преобразованных переменных и применяем к ним обыкновенный МНК. Получаем искомые оценки коэффициентов регрессии.

Достоинством метода является простота его распространения на случай автокорреляции более высокого порядка.

Как показывают эксперименты, проведенные для малых выборок, лучшим является двухшаговый метод 2, использующий оценку r , полученную по методу, предложенному Дарбиным (метод 5 шаг а)).

3 Проверка автокорреляции остатков

При наличии автокорреляции в остатках et оценки коэффициентов регрессии модели, полученные МНК, не будут иметь оптимальные статистические свойства (стандартная ошибка уравнения регрессии и построенные на ее основе доверительные интервалы ненадежны). Автокорреляция в остатках свидетельствует о неудачном подборе модели, о ее несовершенстве. Классические методы математической статистики лишь тогда применимы, когда отдельные члены статистического ряда независимы (некоррелированы). Но и при предпосылке нормального распределения и отсутствия автокорреляции в генеральной совокупности, из которой временной ряд взят, нельзя, к сожалению, разработать точной проверки автокорреляции при малых выборках. Ниже рассмотрены три приема проверки автокорреляции.

1. Один из возможных путей приближенной оценки автокорреляции основывается на использовании первого эмпирического нециклического коэффициента автокорреляции . К сожалению, распределение этого коэффициента для выборок из нормально распределенной, не автокоррелированной генеральной совокупности неизвестно. Поэтому мы пользуемся введенным Р.Л. Андерсоном циклическим коэффициентом автокорреляции, который определяется следующим образом:


(4.14)

Циклическим коэффициентом автокорреляции для сдвига является коэффициент автокорреляции между рядами и . При этом мы предполагаем, что временной ряд повторяется, т.е. что за последним членом xn снова следуют члены x1,x2,... Для циклический коэффициент автокорреляции первого порядка будет коэффициентом корреляции между рядами и x2 ,x3 ,...,xn , x1 . Для больших выборок циклический коэффициент автокорреляции и нециклический коэффициент автокорреляции практически совпадают, для малых выборок их равенство приблизительно. Расчетное значение сравнивается при данной численности наблюдений n с граничными значениями (табл. П.5 Приложения). При положительной автокорреляции оно признается существенным для , если выполняется неравенство > , в противном случае, если , она отсутствует. При отрицательной автокорреляции оно признается существенным, если < , а несущественной - при . Изложенный выше метод может быть использован и для проверки автокорреляции остатков . В последнем случае автокорреляционная функция принимает более простой вид:

(4.15)

2. Для проверки значимости автокорреляции чаще всего используют критерий Дарбина-Уотсона (иногда его обозначают DW). Построенный на основе гипотезы о существовании автокорреляции первого порядка: (4.16)

Где n - длина временного ряда. Величина d имеет симметрическое распределение со средней, равный 2. При отсутствии автокорреляции значение , при полной положительной - d=0 , при полной отрицательной - d=4 .
Расчетное значение d сравнивают с граничными его значениями dL и dU , при этом возможны следующие случаи:

Таблица 4.3


Значение d

Суждение

0 £ d < dL

имеется положительная автокорреляция



неопределенность
автокорреляция отсутствует
неопределенность
имеется отрицательная автокорреляция

Значения dL и dU табулированы (табл. П.7 Приложения) для значений n в интервале 7-100. В этой таблице v означает число независимых переменных в уравнении регрессии. Для функции вида xt =x (t) , v=1 .

3. Иногда вместо статистики Дарбина-Уотсона используется средняя Неймана Q:
(4.17)

(4.18)

(4.19)

Если вычисленное по формуле (4.17) значение Q меньше некоторого критического для данного числа наблюдений n значения (для ), то мы говорим о положительной автокорреляции остатков, если больше значения - то об отрицательной автокорреляции. Эти значения приводятся в табл. П.8 Приложения.

Пример 20. Проверим наличие автокорреляции остатков, полученных в результате моделирования временного ряда примера 1 (см. пример 18).
Прием 1. (через циклический коэффициент автокорреляции).
Первый эмпирический нециклический коэффициент автокорреляции рассчитываем по следующим данным:

1
2
3
4
5
6
7

9
10
11
12
13
14
15

12,051
10,977
-4,097
0,829
-8,245
-6,319
-1,393

8,541
-2,615
4,311
1,237
2,163

Введение

1. Суть и причины автокорреляции

2. Обнаружение автокорреляции

3. Последствия автокорреляции

4. Методы устранения

4.1 Определение

на основе статистики Дарбина-Уотсона

Заключение

Список использованной литературы

Введение

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно-следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E). Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна. Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков

за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».

1.Суть и причины автокорреляции

Автокорреляция - это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.

Автокорреляция остатков чаще всего наблюдается тогда, когда эконометрическая модель строится на основе временных рядов. Если существует корреляция между последовательными значениями некоторой независимой переменной, то будет наблюдаться и корреляция последовательных значений остатков. Автокорреляция может быть также следствием ошибочной спецификации эконометрической модели. Кроме того, наличие автокорреляции остатков может означать, что необходимо ввести в модель новую независимую переменную.

Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК.

Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении экономических показателей, эффект паутины, сглаживание данных.

Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводит к системным отклонениям точек наблюдений от линии регрессии, что может обусловить автокорреляцию.

Инерция. Многие экономические показатели (например, инфляция, безработица, ВНП и т.п.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Действительно, экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей. В любом случае эта трансформация происходит не мгновенно, а обладает определенной инертностью.

Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом). Например, предложение сельскохозяйственной продукции реагирует на изменение цены с запаздыванием (равным периоду созревания урожая). Большая цена сельскохозяйственной продукции в прошедшем году вызовет (скорее всего) ее перепроизводство в текущем году, а следовательно, цена на нее снизится и т.д.

Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может послужить причиной автокорреляции.

2.Обнаружение автокорреляции

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений

,t=1,2…T. Поэтому выводы об их независимости осуществляются на основе оценок ,t=1,2…T, полученные из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

2.1.Графический метод

Существует несколько вариантов графического определения автокорреляции. Один из них, указывающий отклонения

с моментами t их получении (их порядковыми номерами i), приведен на рис. 2.1.Это так называемые последовательно-временные графики. В этом случае по оси абсцисс обычно откладывают либо время (момент) получения статистических данных, либо порядковый номер наблюдения, а по оси ординат- отклонения (либо оценки отклонений )
Рис.2.1.

Естественно предположить, что на рис 2.1. а-г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 2.1.б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости.

2.2. Метод рядов

Этот метод достаточно прост: последовательно определяются знаки отклонений

,t=1,2…T. Например,

(-----)(+++++++)(---)(++++)(-),

Т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда.

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если же рядов слишком много, то вероятна отрицательная автокорреляция.

2.3 Критерий Дарбина-Уотсона

Наиболее известным критерием обнаружения автокорреляции первого порядка является критерий Дарбина- Уотсона и расчет величины

(2.3.1)

Согласно (2.3.1) величина d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Значение критерия Дарбина – Уотсона указывается наряду с коэффициентом детерминации, значениями t- и F- критериев.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама