THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

1.1. Аннотация. Законы теории относительности и квантовой механики, согласно которым происходит движение и взаимодействие элементарных частиц материи, предопределяют формирование и появление закономерностей широчайшего круга явлений, изучаемых различными естественными науками. Эти законы лежат в основе современных высоких технологий и во многом определяют состояние и развитие нашей цивилизации. Поэтому знакомство с основами фундаментальной физики необходимо не только студентам, но и школьникам. Активное владение основными знаниями об устройстве мира необходимо вступающему в жизнь человеку для того чтобы найти своё место в этом мире и успешно продолжать обучение.

1.2. В чём основная трудность этого доклада. Он адресован одновременно и специалистам в области физики элементарных частиц, и гораздо более широкой аудитории: физикам, не занимающимся элементарным частицами, математикам, химикам, биологам, энергетикам, экономистам, философам, лингвистам,... Чтобы быть достаточно точным, я должен пользоваться терминами и формулами фундаментальной физики. Чтобы быть понятым, я должен постоянно пояснять эти термины и формулы. Если физика элементарных частиц не является Вашей специальностью, прочтите сначала только те разделы, заглавия которых не помечены звёздочками. Потом пытайтесь читать разделы с одной звёздочкой *, двумя **, и, наконец, тремя ***. О большинстве разделов без звёздочек я успел рассказать во время доклада, а на остальные не было времени.

1.3. Физика элементарных частиц. Физика элементарных частиц представляет собой фундамент всех естественных наук. Она изучает мельчайшие частицы материи и основные закономерности их движений и взаимодействий. В конечном счёте именно эти закономерности и определяют поведение всех объ ектов на Земле и на небе. Физика элементарных частиц имеет дело с такими фундаментальными понятиями как пространство и время; материя; энергия, импульс и масса; спин. (Большинство читателей имеют представление о пространстве и времени, возможно слышали о связи массы и энергии и не представляют при чём тут импульс, и вряд ли догадываются о важнейшей роли спина в физике. О том, что называть материей, не могут пока договориться между собой даже эксперты.) Физика элементарных частиц была создана в XX веке. Её создание неразрывно связано с созданием двух величайших теорий в истории человечества: теории относительности и квантовой механики. Ключевыми константами этих теорий являются скорость света c и константа Планка h .

1.4. Теория относительности. Специальная теория относительности, возникшая в начале XX века, завершила синтез целого ряда наук, изучавших такие классические явления, как электричество, магнетизм и оптика, создав механику при скоростях тел, сравнимых со скоростью света. (Классическая нерелятивистская механика Ньютона имела дело со скоростями v <<c .) Затем в 1915 г. была создана общая теория относительности, которая была призвана описать гравитационные взаимодействия, учитывая конечность скорости света c .

1.5. Квантовая механика. Квантовая механика, созданная в 1920-х годах, объяснила строение и свойства атомов, исходя из дуальных корпускулярно-волновых свойств электронов. Она объяснила огромный круг химических явлений, связанных с взаимодействием атомов и молекул. И позволила описать процессы испускания и поглощения ими света. Понять информацию, которую несёт нам свет Солнца и звёзд.

1.6. Квантовая теория поля. Объединение теории относительности и квантовой механики привело к созданию квантовой теории поля, позволяющей с высокой степенью точности описать важнейшие свойства материи. Квантовая теория поля, разумеется, слишком сложна, чтобы её можно было объяснить школьникам. Но в середине XX века в ней возник наглядный язык фейнмановских диаграмм, который радикально упрощает понимание многих аспектов квантовой теории поля. Одна из основных целей этого доклада - показать, как с помощью фейнмановских диаграмм можно просто понять широчайший круг явлений. При этом я буду более детально останавливаться на вопросах, которые известны далеко не всем экспертам по квантовой теории поля (например, о связи классической и квантовой гравитации), и лишь скупо очерчу вопросы, широко обсуждаемые в научно-популярной литературе.

1.7. Тождественность элементарных частиц. Элементарными частицами называют мельчайшие неделимые частицы материи, из которых построен весь мир. Самым удивительнейшим свойством, отличающим эти частицы от обычных не элементарных частиц, например, песчинок или бусинок, является то, что все элементарные частицы одного сорта, например, все электроны во Вселенной абсолютно(!) одинаковы - тождественны. А как следствие, тождественны друг другу и их простейшие связанные состояния - атомы и простейшие молекулы.

1.8. Шесть элементарных частиц. Чтобы понять основные процессы, происходящие на Земле и на Солнце, в первом приближении достаточно понимать процессы, в которых участвуют шесть частиц: электрон e , протон p , нейтрон n и электронное нейтрино ν e , а также фотон γ и гравитон g̃. Первые четыре частицы имеют спин 1/2, спин фотона равен 1, а гравитона 2. (Частицы с целым спином называют бозонами, частицы с полуцелым спином называют фермионами. Более подробно о спине будет сказано ниже.) Протоны и нейтроны обычно называют нуклонами, поскольку из них построены атомные ядра, а ядро по-английски nucleus. Электрон и нейтрино называют лептонами. Они не обладают сильными ядерными взаимодействиями.

Из-за очень слабого взаимодействия гравитонов наблюдать отдельные гравитоны невозможно, но именно посредством этих частиц осуществляется в природе гравитация. Подобно тому, как посредством фотонов осуществляются электромагнитные взаимодействия.

1.9. Античастицы. У электрона, протона и нейтрона есть так называемые античастицы: позитрон, антипротон и антинейтрон. В состав обычного вещества они не входят, так как встречаясь с соответствующими частицами, вступают с ними в реакции взаимного уничтожения - аннигиляции. Так, электрон и позитрон аннигилируют в два или три фотона. Фотон и гравитон являются истинно нейтральными частицами: они совпадают со своими античастицами. Является ли истинно нейтральной частицей нейтрино, пока неизвестно.

1.10. Нуклоны и кварки. В середине XX века выяснилось, что сами нуклоны состоят из более элементарных частиц - кварков двух типов, которые обозначают u и d : p = uud , n = ddu . Взаимодействие между кварками осуществляется глюонами. Антинуклоны состоят из антикварков.

1.11. Три поколения фермионов. Наряду с u , d , e , ν e были открыты и изучены две другие группы (или, как говорят, поколения) кварков и лептонов: c , s , μ, ν μ и t , b , τ , ν τ . В состав обычного вещества эти частицы не входят, так как они нестабильны и быстро распадаются на более лёгкие частицы первого поколения. Но они играли важную роль в первые мгновения существования Вселенной.

Для ещё более полного и глубокого понимания природы нужно ещё больше частиц с ещё более необычными свойствами. Но, возможно, в дальнейшем всё это разнообразие удастся свести к нескольким простым и прекрасным сущностям.

1.12. Адроны. Многочисленное семейство частиц, состоящих из кварков и/или антикварков и глюонов, называют адронами. Все адроны, за исключением нуклонов, нестабильны и поэтому в состав обычного вещества не входят.

Часто адроны тоже относят к элементарным частицам, поскольку их нельзя разбить на свободные кварки и глюоны. (Так поступил и я, отнеся протон и нейтрон к первым шести элементарным частицам.) Если все адроны считать элементарными, то число элементарных частиц будет измеряться сотнями.

1.13. Стандартная модель и четыре типа взаимодействий. Как будет разъяснено ниже, перечисленные выше элементарные частицы позволяют в рамках так называемой «Стандартной модели элементарных частиц» описать все известные до сих пор процессы, проистекающие в природе в результате гравитационного, электромагнитного, слабого и сильного взаимодействий. Но для того чтобы понять, как работают первые два из них, достаточно четырёх частиц: фотона, гравитона, электрона и протона. При этом то, что протон состоит из u - и d -кварков и глюонов, оказывается несущественным. Конечно, без слабого и сильного взаимодействий нельзя понять, ни как устроены атомные ядра, ни как работает наше Солнце. Но как устроены атомные оболочки, определяющие все химические свойства элементов, как работает электричество и как устроены галактики, понять можно.

1.14. За пределами познанного. Мы уже сегодня знаем, что частицы и взаимодействия Стандартной модели не исчерпывают сокровищницы природы.

Установлено, что обычные атомы и ионы составляет лишь менее 20% всей материи во Вселенной, а более 80% составляет так называемая тёмная материя, природа которой пока неизвестна. Наиболее распространено мнение, что тёмная материя состоит из суперчастиц. Возможно, что она состоит из зеркальных частиц.

Ещё более поразительным является то, что вся материя, как видимая (светлая), так и тёмная, несёт в себе лишь четверть всей энергии Вселенной. Три четверти принадлежат так называемой тёмной энергии.

1.15. Элементарные частицы « e в степени» фундаментальны. Когда мой учитель Исаак Яковлевич Померанчук хотел подчеркнуть важность какого-либо вопроса, он говорил, что вопрос e в степени важен. Разумеется, большая часть естественных наук, а не только физика элементарных частиц, фундаментальны. Физика конденсированных сред, например, подчиняется фундаментальным законам, которыми можно пользоваться, не выясняя того, как они следуют из законов физики элементарных частиц. Но законы теории относительности и квантовой механики «e в степени фундаментальны» в том смысле, что им не может противоречить ни один из менее общих законов.

1.16. Основные законы. Все процессы в природе происходят в результате локальных взаимодействий и движений (распространений) элементарных частиц. Основные законы, управляющие этими движениями и взаимодействиями, очень необычны и очень просты. Они основаны на понятии симметрии и принципе, что всё, что не противоречит симметрии, может и должно происходить. Ниже мы, используя язык фейнмановских диаграмм, проследим, как это реализуется в гравитационном, электромагнитном, слабом и сильном взаимодействиях частиц.

2. Частицы и жизнь

2.1. О цивилизации и культуре. Иностранный член РАН Валентин Телегди (1922–2006) пояснял: «Если WC (ватерклозет) - это цивилизация, то умение пользоваться им - это культура».

Сотрудник ИТЭФ А. А. Абрикосов мл. написал мне недавно: «Одна из целей Вашего доклада - убедить высокую аудиторию в необходимости шире преподавать современную физику. Если так, то возможно, стоило бы привести несколько бытовых примеров. Я имею в виду следующее:

Мы живём в мире, который даже на бытовом уровне немыслим без квантовой механики (КМ) и теории относительности (ТО). Сотовые телефоны, компьютеры, вся современная электроника, не говоря про светодиодные фонари, полупроводниковые лазеры (включая указки), ЖК-дисплеи - это существенно квантовые приборы. Объяснить, как они работают, невозможно без основных понятий КМ. А как их объяснишь, не упоминая о туннелировании?

Второй пример, возможно, знаю от Вас. Спутниковые навигаторы стоят уже в каждой 10-й машине. Точность синхронизации часов в спутниковой сети не меньше, чем 10 −8 (это отвечает погрешности порядка метра в локализации объекта на поверхности Земли). Подобная точность требует учитывать поправки ТО к ходу часов на движущемся спутнике. Говорят, инженеры не могли в это поверить, поэтому первые приборы имели двойную программу: с и без учёта поправок. Как выяснилось, первая программа работает лучше. Вот Вам проверка теории относительности на бытовом уровне.

Разумеется, болтать по телефону, ездить на автомобиле и стучать по клавишам компьютера можно и без высокой науки. Но едва ли академики должны призывать не учить географию, ибо «извозчики есть».

А то школьникам, а потом и студентам пять лет талдычат про материальные точки и галилеевскую относительность, и вдруг ни с того, ни с сего заявляют, что это «не совсем правда».

Перестроиться с наглядного ньютоновского мира на квантовый даже на физтехе трудно. Ваш, AAA».

2.2. О фундаментальной физике и образовании. К сожалению, современная система образования отстала от современной фундаментальной физики на целый век. И большинство людей (в том числе и большинство научных работников) не имеют представления о той удивительно ясной и простой картине (карте) мира, которую создала физика элементарных частиц. Эта карта даёт возможность гораздо легче ориентироваться во всех естественных науках. Цель моего доклада - убедить вас в том, что некоторые элементы (понятия) физики элементарных частиц, теории относительности и квантовой теории могут и должны стать основой преподавания всех естественнонаучных предметов не только в высшей, но и в средней и даже в начальной школе. Ведь фундаментально новые понятия легче всего осваиваются именно в детском возрасте. Ребёнок легко овладевает языком, осваивается с мобильным телефоном. Многие дети в считанные секунды возвращают кубик Рубика в исходное состояние, а мне и суток не хватит.

Чтобы в дальнейшем не было неприятных сюрпризов, закладывать адекватное мировосприятие надо в детском саду. Константы c и h должны стать для детей инструментами познания.

2.3. О математике. Математика - царица и служанка всех наук - безусловно должна служить основным инструментом познания. Она даёт такие основные понятия, как истина, красота, симметрия, порядок. Понятия о нуле и бесконечности. Математика учит думать и считать. Фундаментальная физика немыслима без математики. Образование немыслимо без математики. Конечно, изучать теорию групп в школе, может быть, и рано, но научить ценить истину, красоту, симметрию и порядок (а заодно и некоторый беспорядок) необходимо.

Очень важно понимание перехода от вещественных (реальных) чисел (простых, рациональных, иррациональных) к мнимым и комплексным. Изучать гиперкомплексные числа (кватернионы и октонионы) должны, наверное, только те студенты, которые хотят работать в области математики и теоретической физики. В своей работе я, например, никогда не использовал октонионы. Но я знаю, что они упрощают понимание самой многообещающей, по мнению многих физиков-теоретиков, исключительной группы симметрии E 8 .

2.4. О мировоззрении и естественных науках. Представление об основных законах, управляющих миром, необходимо во всех естественных науках. Конечно, физика твёрдого тела, химия, биология, науки о Земле, астрономия имеют свои специфические понятия, методы, проблемы. Но очень важно иметь общую карту мира и понимание того, что на этой карте есть много белых пятен неизведанного. Очень важно понимание того, что наука это не окостеневшая догма, а живой процесс приближения к истине во множестве точек карты мира. Приближение к истине - асимптотический процесс.

2.5. Об истинном и вульгарном редукционизме. Представление о том, что более сложные конструкции в природе состоят из менее сложных конструкций и, в конечном счёте, из простейших элементов, принято называть редукционизмом. В этом смысле то, в чём я пытаюсь Вас убедить, это редукционизм. Но абсолютно недопустим вульгарный редукционизм, претендующий на то, что все науки могут быть сведены к физике элементарных частиц. На каждом всё более высоком уровне сложности формируются и возникают (emerge) свои закономерности. Чтобы быть хорошим биологом, знать физику элементарных частиц не нужно. Но понимать её место и роль в системе наук, понимать узловую роль констант c и h необходимо. Ведь наука в целом это - единый организм.

2.6. О гуманитарных и общественных науках. Общее представление об устройстве мира очень важно и для экономики, и для истории, и для когнитивных наук, таких, как науки о языке, и для философии. И наоборот - эти науки крайне важны для самой фундаментальной физики, которая постоянно уточняет свои основополагающие понятия. Это будет видно из рассмотрения теории относительности, к которому я сейчас перейду. Особо скажу о науках юридических, исключительно важных для процветания (не говоря уже о выживании) естественных наук. Я убеждён в том, что общественные законы не должны противоречить фундаментальным законам природы. Законы человеческие не должны противоречить Божественным Законам Природы.

2.7. Микро-, Макро-, Космо-. Наш обычный мир больших, но не гигантских, вещей принято называть макромиром. Мир небесных объектов можно назвать космомиром, а мир атомных и субатомных частиц называют микромиром. (Поскольку размеры атомов порядка 10 −10 м, то под микромиром подразумевают объекты как минимум на 4, а то и на 10 порядков меньшие, чем микрометр, и на 1–7 порядков меньшие, чем нанометр. Модная область нано расположена по дороге от микро к макро.) В XX веке была построена так называемая Стандартная модель элементарных частиц, которая позволяет просто и наглядно понимать многие закономерности макро и космо на основе закономерностей микро.

2.8. Наши модели. Модели в теоретической физике строятся путём отбрасывания несущественных обстоятельств. Так, например, в атомной и ядерной физике гравитационные взаимодействия частиц пренебрежимо малы, и их можно не принимать во внимание. Такая модель мира вписывается в специальную теорию относительности. В этой модели есть атомы, молекулы, конденсированные тела,... ускорители и коллайдеры, но нет Солнца и звёзд.

Такая модель наверняка будет неправильна на очень больших масштабах, где существенна гравитация.

Конечно, для существования ЦЕРН необходимо существование Земли (и, следовательно, гравитации), но для понимания подавляющего большинства экспериментов, ведущихся в ЦЕРН (кроме поисков на коллайдере микроскопических «чёрных дырочек»), гравитация несущественна.

2.9. Порядки величин. Одна из трудностей в понимании свойств элементарных частиц связана с тем, что они очень маленькие и их очень много. В ложке воды огромное количество атомов (порядка 10 23). Не намного меньше и число звёзд в видимой части Вселенной. Больших чисел не надо бояться. Ведь обращаться с ними несложно, так как умножение чисел сводится в основном к сложению их порядков: 1 = 10 0 , 10 = 10 1 , 100 = 10 2 . Умножим 10 на 100, получим 10 1+2 = 10 3 = 1000.

2.10. Капля масла. Если каплю масла объёмом 1 миллилитр капнуть на поверхность воды, то она расплывётся в радужное пятно площадью порядка нескольких квадратных метров и толщиной порядка сотни нанометров. Это всего на три порядка больше размера атома. А толщина плёнки мыльного пузыря в самых тонких местах порядка размеров молекул.

2.11. Джоули. Обычная батарейка АА имеет напряжение 1,5 вольта (В) и содержит запас электрической энергии 10 4 джоулей (Дж). Напомню, что 1 Дж = 1 кулон × 1 В, а также, что 1 Дж = кг м 2 /с 2 и что ускорение земного притяжения примерно 10 м/с 2 . Так что 1 джоуль позволяет поднять 1 килограмм на высоту 10 см, а 10 4 Дж поднимут 100 кг на 10 метров. Столько энергии потребляет лифт, чтобы поднять школьника на десятый этаж. Вот сколько энергии в батарейке.

2.12. Электронвольты. Единицей энергии в физике элементарных частиц является электронвольт (эВ): энергию 1 эВ приобретает 1 электрон, прошедший разность потенциалов 1 вольт. Поскольку в одном кулоне 6,24 · 10 18 электронов, то 1 Дж= 6,24 ·× 10 18 эВ.

1 кэВ =10 3 эВ, 1 МэВ =10 6 эВ, 1 ГэВ =10 9 эВ, 1 ТэВ =10 12 эВ.

Напомню, что энергия одного протона в Большом адронном коллайдере ЦЕРН должна быть равна 7 ТэВ.

3. О теории относительности

3.1. Системы отсчёта. Все наши опыты мы описываем в тех или иных системах отсчёта. Системой отсчёта может быть лаборатория, поезд, спутник Земли, центр галактики... . Системой отсчёта может быть и любая частица, летящая, например, в ускорителе частиц. Так как все эти системы движутся друг относительно друга, то не все опыты будут в них выглядеть одинаково. Кроме того, в них различно и гравитационное воздействие ближайших массивных тел. Именно учёт этих различий составляет основное содержание теории относительности.

3.2. Корабль Галилея. Галилей сформулировал принцип относительности, красочно описав всевозможные опыты в каюте плавно плывущего корабля. Если окна занавешены, невозможно с помощью этих опытов выяснить, с какой скоростью движется корабль и не стоит ли он. Эйнштейн добавил в эту каюту опыты с конечной скоростью света. Если не смотреть в окно, узнать скорость корабля нельзя. Но если посмотреть на берег, то можно.

3.3. Далёкие звёзды*. Разумно выделить такую систему отсчёта, относительно которой люди могли бы формулировать результаты своих опытов, независимо от того, где они находятся. За такую универсальную систему отсчёта уже давно принимают систему, в которой неподвижны далёкие звёзды. А сравнительно недавно (полвека тому назад) были открыты ещё более далёкие квазары и выяснилось, что в этой системе должен быть изотропен реликтовый микроволновой фон.

3.4. В поисках универсальной системы отсчёта*. По существу, вся история астрономии - это продвижение ко всё более универсальной системе отсчёта. От антропоцентрической, где в центре человек, к геоцентрической, где в центре покоящаяся Земля (Птолемей, 87–165), к гелиоцентрической, где в центре покоится Солнце (Коперник, 1473–1543), к галацентрической, где покоится центр нашей Галактики, к небулярной, где покоится система туманностей - скоплений галактик, к фоновой, где изотропен космический микроволновой фон. Существенно, однако, что скорости этих систем отсчёта малы по сравнению со скоростью света.

3.5. Коперник, Кеплер, Галилей, Ньютон*. В книге Николая Коперника «О вращениях небесных сфер», вышедшей в 1543 г., говорится: «Все замечаемые у Солнца движения не свойственны ему, но принадлежат Земле и нашей сфере, вместе с которой мы вращаемся вокруг Солнца, как и всякая другая планета; таким образом, Земля имеет несколько движений. Кажущиеся прямые и обратные движения планет принадлежат не им, но Земле. Таким образом, одно это её движение достаточно для объяснения большого числа видимых в небе неравномерностей».

Коперник и Кеплер (1571–1630) дали простое феноменологическое описание кинематики этих движений. Галилей (1564–1642) и Ньютон (1643–1727) объяснили их динамику.

3.6. Универсальные пространство и время*. Пространственные координаты и время, отнесённые к универсальной системе отсчёта, можно назвать универсальными или абсолютными в полнейшей гармонии с теорией относительности. Важно подчеркнуть только, что выбор этой системы производится и согласовывается локальными наблюдателями. Любая система отсчёта, поступательно движущаяся относительно универсальной системы, является инерциальной: в ней свободное движение равномерно и прямолинейно.

3.7. «Теория инвариантности» *. Заметим, что и Альберт Эйнштейн (1879–1955), и Макс Планк (1858–1947) (который ввёл в 1907 г. термин «теория относительности», назвав им теорию, выдвинутую Эйнштейном в 1905 г.) считали, что термин «теория инвариантности» мог бы более точно отражать ее суть. Но, по-видимому, в начале XX века важней было подчеркнуть относительность таких понятий, как время и одновременность в равноправных инерциальных системах отсчёта, чем выделять одну из этих систем. Важней было, что при занавешенных окнах каюты Галилея выяснить скорость корабля нельзя. Но сейчас пришла пора раздвинуть шторы и посмотреть на берег. При этом, разумеется, все закономерности, установленные при закрытых шторах, останутся незыблемыми.

3.8. Письмо Чиммеру *. В 1921 г. Эйнштейн в письме Э. Чиммеру - автору книги «Философские письма» написал: «Что касается термина «теория относительности», то я признаю, что он неудачен и приводит к философским недоразумениям». Но менять его, по мнению Эйнштейна, уже поздно, в частности, потому, что он широко распространён. Это письмо опубликовано в вышедшем осенью 2009 г. 12 томе 25-томного «Собрания трудов Эйнштейна», издаваемого в Принстоне.

3.9. Максимальная скорость в природе. Ключевой константой теории относительности является скорость света c = 300 000 км/с= 3 × 10 8 м/с. (Более точно, c = 299 792 458 м/с. И это число лежит теперь в основе определения метра.) Эта скорость является максимальной скоростью распространения любых сигналов в природе. Она на много порядков величин превышает скорости массивных объектов, с которыми мы имеем дело каждодневно. Именно её непривычно большая величина мешает пониманию основного содержания теории относительности. Частицы, движущиеся со скоростями порядка скорости света, называют релятивистскими.

3.10. Энергия, импульс и скорость. Свободное движение частицы характеризуется энергией частицы E и её импульсом p . Согласно теории относительности, скорость частицы v определяется формулой

Одна из основных причин терминологической путаницы, о которой говорится в разд. 3.14, заключается в том, что при создании теории относительности пытались сохранить ньютоновскую связь между импульсом и скоростью p = m v , что противоречит теории относительности.

3.11. Масса. Масса частицы m определяется формулой

В то время как энергия и импульс частицы зависят от системы отсчёта, величина её массы m от системы отсчёта не зависит. Она является инвариантом. Формулы (1) и (2) являются основными в теории относительности.

Как ни странно, первая монография по теории относительности, в которой появилась формула (2), вышла только в 1941 г. Это была «Теории поля» Л. Ландау (1908–1968) и Е. Лифшица (1915–1985). Ни в одном из трудов Эйнштейна я её не нашёл. Нет её и в замечательной книге «Теория относительности» В. Паули (1900–1958), вышедшей в 1921 г. Но релятивистское волновое уравнение, содержащее эту формулу, было в вышедшей в 1930 г. книге «Принципы квантовой механики» П. Дирака (1902–1984), а еще раньше в статьях 1926 г. О. Клейна (1894– 1977) и В. Фока (1898–1974).

3.12. Безмассовый фотон. Если масса частицы равна нулю, т. е. частица является безмассовой, то из формул (1) и (2) следует, что в любой системе отсчета ее скорость равна c . Поскольку масса частицы света - фотона - настолько мала, что ее не удается обнаружить, то принято считать, что она равна нулю и что c - это скорость света.

3.13. Энергия покоя. Если же масса частицы отлична от нуля, то рассмотрим систему отсчёта, в которой свободная частица покоится и у неё v = 0, p = 0. Такую систему отсчёта называют системой покоя частицы, а энергию частицы в этой системе называют энергией покоя и обозначают E 0 . Из формулы (2) следует, что

Эта формула выражает соотношение между энергией покоя массивной частицы и её массой, открытое Эйнштейном в 1905 г.

3.14. «Самая знаменитая формула». К сожалению, очень часто формулу Эйнштейна записывают в виде «самой знаменитой формулы E = mc 2 », опуская нулевой индекс у энергии покоя, что приводит к многочисленным недоразумениям и путанице. Ведь эта «знаменитая формула» отождествляет энергию и массу, что противоречит теории относительности вообще и формуле (2) в частности. Из неё вытекает широко распространённое заблуждение, что масса тела, согласно теории относительности, якобы растёт с ростом его скорости. В последние годы Российская академия образования много сделала для того, чтобы рассеять это заблуждение.

3.15. Единица скорости *. В теории относительности, имеющей дело со скоростями, сравнимыми со скоростью света, естественно выбрать c в качестве единицы скорости. Такой выбор упрощает все формулы, поскольку c /c = 1, и в них следует положить c = 1. При этом скорость становится безразмерной величиной, расстояние имеет размерность времени, а масса имеет размерность энергии.

В физике элементарных частиц массы частиц обычно измеряют в электронвольтах - эВ и их производных (см разд. 2.14). Масса электрона порядка 0,5 МэВ, масса протона порядка 1 ГэВ, масса самого тяжёлого кварка порядка 170 ГэВ, а массы нейтрино порядка долей эВ.

3.16. Астрономические расстояния *. В астрономии расстояния измеряют световыми годами. Размеры видимой части Вселенной порядка 14 миллиардов световых лет. Это число производит ещё более сильное впечатление, если сравнить его со временем 10 −24 с, за которое свет проходит расстояние порядка размера протона. И во всём этом колоссальном диапазоне работает теория относительности.

3.17. Мир Минковского. В 1908 г. за несколько месяцев до своей безвременной смерти Герман Минковский (1864–1909) пророчески сказал: «Воззрения на пространство и время, которые я намерен перед вами развить, возникли на экспериментально-физической основе. В этом их сила. Их тенденция радикальна. Отныне пространство само по себе и время само по себе должны обратиться в фикции, и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность».

Спустя столетие мы знаем, что время и пространство не превратились в фикции, но идея Минковского позволила очень просто описать движения и взаимодействия частиц материи.

3.18. Четырёхмерный мир *. В единицах, в которых c = 1, особенно красиво выглядит представление о мире Минковского, который объединяет время и трёхмерное пространство в единый четырёхмерный мир. Энергия и импульс объединяются при этом в единый четырёхмерный вектор, а масса в соответствии с уравнением (2) служит псевдоевклидовой длиной этого 4-вектора энергии-импульса p = E , p :

Четырёхмерную траекторию в мире Минковского называют мировой линией, а отдельные точки - мировыми точками.

3.19. Зависимость хода часов от их скорости **. Многочисленные наблюдения указывают на то, что часы идут быстрее всего, когда они покоятся относительно инерциальной системы. Финитное движение в инерциальной системе отсчёта замедляет их ход. Чем быстрей они перемещаются в пространстве, тем медленнее идут во времени. Замедление это абсолютное в универсальной системе отсчёта (см. разд. 3.1–3.8). Его мерой является отношение E/m , которое часто обозначают буквой γ.

3.20. Мюоны в кольцевом ускорителе и в покое **. В существовании этого замедления нагляднее всего можно убедиться, сравнивая времена жизни покоящегося мюона и мюона, вращающегося в кольцевом ускорителе. То обстоятельство, что в ускорителе мюон движется не вполне свободно, а имеет центростремительное ускорение ω 2 R , где ω - радиальная частота обращения, а R - радиус орбиты, даёт лишь пренебрежимо малую поправку, поскольку E/ω 2 R = ER >> 1. Движение по окружности, а не по прямой, абсолютно существенно для непосредственного сопоставления вращающегося мюона с покоящимся. Но в том, что касается темпа старения движущегося мюона, дуга окружности достаточно большого радиуса неотличима от прямой. Этот темп определяются отношением E/m . (Подчеркну, что согласно специальной теории относительности, система отсчёта, в которой покоится вращающийся мюон, не инерциальна.)

3.21. Дуга и хорда **. С точки зрения наблюдателя, по- коящегося в инерциальной системе отсчёта, дуга окружности достаточно большого радиуса и её хорда практически неотличимы: движение по дуге почти инерциально. С точки же зрения наблюдателя, покоящегося относительно мюона, летящего по окружности, его движение существенно не инерциально. Ведь его скорость меняет знак за пол-оборота. (Для движущегося наблюдателя далёкие звёзды отнюдь не неподвижны. Вся Вселенная для него асимметрична: звёзды впереди синие, а позади красные. В то время как для нас все они одинаковые - золотистые, потому что скорость солнечной системы мала.) А неинерциальность этого наблюдателя проявляется в том, что созвездия впереди и сзади меняются по мере движения мюона в кольцевом ускорителе. Мы не можем считать покоящегося и движущегося наблюдателей эквивалентными, поскольку первый не испытывает никакого ускорения, а второй, чтобы вернуться к месту встречи, должен испытывать его.

3.22. ОТО **. Физики-теоретики, привыкшие к языку Общей теории относительности (ОТО), настаивают на том, что все системы отсчёта равноправны. Не только инерциальные, но и ускоренные. Что пространство-время само по себе - кривое. При этом гравитационное взаимодействие перестаёт быть таким же физическим взаимодействием, как электромагнитное, слабое и сильное, а становится исключительным проявлением кривого пространства. В результате вся физика для них оказывается как бы расколотой на две части. Если же исходить из того, что ускорение всегда обусловлено взаимодействием, что оно не относительно, а абсолютно, то физика становится единой и простой.

3.23. «Ленком». Употребление слов «относительность» и «релятивизм» в отношении скорости света напоминает название театра «Ленком» или газеты «Московский комсомолец», лишь генеалогически связанных с комсомолом. Таковы языковые парадоксы. Скорость света в пустоте не относительна. Она абсолютна. Просто физикам нужна помощь лингвистов.

4. О квантовой теории

4.1. Константа Планка. Если в теории относительности ключевой константой является скорость света c , то в квантовой механике ключевой является константа h = 6,63·10 −34 Дж· c, открытая Максом Планком в 1900 г. Физический смысл этой константы станет ясен из последующего изложения. Большей частью в формулах квантовой механики фигурирует так называемая приведённая константа Планка:

ħ = h/2π = 1,05·10 −34 Дж × c = 6,58·10 −22 МэВ·c.

Во многих явлениях важную роль играет величина ħc = 1,97·10 −11 МэВ·см.

4.2. Спин электрона. Начнём с широко известного наивного сравнения атома с планетной системой. Планеты вращаются вокруг Солнца и вокруг собственной оси. Подобно этому, электроны вращаются вокруг ядра и вокруг собственной оси. Вращение электрона по орбите характеризуют орбитальным угловым импульсом L (его часто и не вполне правильно называют орбитальным угловым моментом). Вращение электрона вокруг собственной оси характеризуют собственным угловым импульсом - спином S . Оказалось, что у всех электронов в мире спин равен (1/2)ħ . Для сравнения отметим, что «спин» Земли равен 6·10 33 м 2 ·кг/c = 6·10 67 ħ .

4.3. Атом водорода. На самом деле атом это не планетная система, а электрон не обычная частица, движущаяся по орбите. Электрон, как и все другие элементарные частицы, вовсе не является частицей в том житейском смысле этого слова, который подразумевает, что частица должна двигаться по определённой траектории. В простейшем атоме - атоме водорода, если он находится в своём основном состоянии, т. е. не возбуждён, электрон напоминает скорее сферическое облачко радиусом порядка 0,5·10 −10 м. По мере возбуждения атома, электрон переходит во все более высокие состояния, имеющие всё больший размер.

4.4. Квантовые числа электронов. Без учёта спина движение электрона в атоме характеризуют двумя квантовыми числами: главным квантовым числом n и орбитальным квантовым числом l , причём n l . Если l = 0, то электрон представляет собой сферически симметричное облако. Чем больше n, тем больше размер этого облака. Чем больше l , тем больше движение электрона похоже на движение классической частицы по орбите. Энергия связи электрона, находящегося в атоме водорода на оболочке с квантовым числом n , равна

где α = e 2 /ħc ≈ 1/137, a e - заряд электрона.

4.5. Многоэлектронные атомы. Спин играет ключевую роль при заполнении электронных оболочек многоэлектронных атомов. Дело в том, что два электрона с одинаково направленным собственным вращением (одинаково направленными спинами) не могут находиться на одной оболочке с данными значениями n и l . Это запрещено так называемым принципом Паули (1900–1958). По существу, принцип Паули определяет периоды Периодической таблицы элементов Менделеева (1834–1907).

4.6. Бозоны и фермионы. Все элементарные частицы обладают спином. Так, спин фотона равен 1 в единицах ħ , спин гравитона равен 2. Частицы с целым спином в единицах ħ получили название бозонов. Частицы с полуцелым спином называют фермионами. Бозоны - коллективисты: «они стремятся все жить в одной комнате», находиться в одном квантовом состоянии. На этом свойстве фотонов основан лазер: все фотоны в лазерном пучке имеют строго одинаковые импульсы. Фермионы же индивидуалисты: «каждому из них нужна отдельная квартира». Это свойство электронов определяет закономерности заполнения электронных оболочек атомов.

4.7. «Квантовые кентавры». Элементарные частицы это как бы квантовые кентавры: получастицы - полуволны. Благодаря своим волновым свойствам квантовые кентавры, в отличие от классических частиц, могут проходить сразу через две щели, создавая в результате интерференционную картину на стоящем позади экране. Все попытки уложить квантовых кентавров в прокрустово ложе понятий классической физики оказались бесплодными.

4.8. Соотношения неопределённости. Константа ħ определяет особенности не только вращательного, но и поступательного движения элементарных частиц. Неопределённости положения и импульса частицы должны удовлетворять так называемым соотношениям неопределённости Гейзенберга (1901–1976), типа

Аналогичное соотношение существует для энергии и времени:

4.9. Квантовая механика. И квантование спина, и соотношения неопределённости являются частными проявлениями общих закономерностей квантовой механики, созданной в 20-х годах XX века. Согласно квантовой механике, любая элементарная частица, например, электрон, это одновременно и элементарная частица, и элементарная (одночастичная) волна. Причём, в отличие от обычной волны, которая является периодическим движением колоссального числа частиц, элементарная волна - это новый, неизвестный ранее вид движения индивидуальной частицы. Элементарная длина волны λ частицы с импульсом p равна λ = h /|p |, а элементарная частота ν , отвечающая энергии E , равна ν = E/h .

4.10. Квантовая теория поля. Итак, сначала мы были вынуждены признать, что частицы могут быть сколь угодно лёгкими и даже безмассовыми, и что их скорости не могут превышать c . Потом мы были вынуждены признать, что частицы вовсе не частицы, а своеобразные гибриды частиц и волн, поведение которых объединяется квантом h . Объединение теории относительности и квантовой механики было произведено Дираком (1902–1984) в 1930 г. и привело к созданию теории, которая получила название квантовая теория поля. Именно эта теория описывает основные свойства материи.

4.11. Единицы, в которых c , ħ = 1. В дальнейшем мы, как правило, будем пользоваться такими единицами, в которых за единицу скорости принята c , а за единицу углового импульса (действия) - ħ . В этих единицах все формулы существенно упрощаются. В них, в частности, размерности энергии, массы и частоты одинаковы. Эти единицы приняты в физике высоких энергий, поскольку в ней существенны квантовые и релятивистские явления. В тех случаях, когда надо подчеркнуть квантовый характер того или иного явления, мы будем явно выписывать ħ . Аналогично будем поступать и с c .

4.12. Эйнштейн и квантовая механика*. Эйнштейн, в известном смысле породив квантовую механику, не примирился с ней. И до конца жизни пытался построить «единую теорию всего» на основе классической теории поля, игнорируя ħ . Эйнштейн верил в классический детерминизм и в недопустимость случайности. Он повторял о Боге: «Он не играет в кости». И не мог примириться с тем, что мгновение распада индивидуальной частицы в принципе предсказать нельзя, хотя среднее время жизни того или иного типа частиц предсказывается в рамках квантовой механики с беспрецедентной точностью. К сожалению, его пристрастия определили взгляды очень многих людей.

5. Диаграммы Фейнмана

5.1. Простейшая диаграмма. Взаимодействия частиц удобно рассматривать с помощью диаграмм, предложенных Ричардом Фейнманом (1918–1988) в 1949 г. На рис. 1 приведена простейшая диаграмма Фейнмана, описывающая взаимодействие электрона и протона путём обмена фотоном.

Стрелки на рисунке указывают направление течения времени для каждой частицы.

5.2. Реальные частицы. Каждому процесс отвечает одна или несколько диаграмм Фейнмана. Внешним линиям на диаграмме соответствуют входящие (до взаимодействия) и выходящие (после взаимодействия) частицы, которые свободны. Их 4-импульсы p удовлетворяют уравнению

Их называют реальными частицами и говорят, что они находятся на массовой поверхности.

5.3. Виртуальные частицы. Внутренние линии диаграмм соответствуют частицам, находящимся в виртуальном состоянии. Для них

Их называют виртуальными частицами и говорят, что они находятся вне массовой поверхности. Распространение виртуальной частицы описывается математической величиной, которую называют пропагатором.

Эта общепринятая терминология может натолкнуть новичка на мысль, что виртуальные частицы менее материальны, чем реальные частицы. В действительности же они в равной степени материальны, но реальные частицы мы воспринимаем как вещество и излучение, а виртуальные - в основном как силовые поля, хотя это различие в значительной степени условно. Важно, что одна и та же частица, например, фотон или электрон, может быть реальной в одних условиях и виртуальной - в других.

5.4. Вершины. Вершины диаграммы описывают локальные акты элементарных взаимодействий между частицами. В каждой вершине 4-импульс сохраняется. Легко видеть, что если в одной вершине встречаются три линии стабильных частиц, то по крайней мере одна из них должна быть виртуальной, т. е. должна находиться вне массовой поверхности: «Боливару не снести троих». (Например, свободный электрон не может испустить свободный фотон и остаться при этом свободным электроном.)

Две реальные частицы взаимодействуют на расстоянии, обмениваясь одной или несколькими виртуальными частицами.

5.5. Распространение. Если о реальных частицах говорят, что они движутся, то о виртуальных частицах говорят, что они распространяются (propagate). Термин «распространение» подчёркивает то обстоятельство, что у виртуальной частицы может быть много траекторий, и может быть, что ни одна из них не является классической, как у виртуального фотона с нулевой энергией и ненулевым импульсом, описывающим статическое кулоновское взаимодействие.

5.6. Античастицы. Замечательным свойством фейнмановских диаграмм является то, что они единым образом описывают как частицы, так и соответствующие античастицы. При этом античастица выглядит, как частица, движущаяся вспять по времени. На рис. 2 приведена диаграмма, изображающая рождение протона и антипротона при аннигиляции электрона и позитрона.

Движение вспять по времени в равной мере применимо и к фермионам, и к бозонам. Оно делает ненужной интерпретацию позитронов как незаполненных состояний в море электронов с отрицательной энергией, к которой прибег Дирак, когда в 1930 г. ввёл понятие античастицы.

5.7. Швингер и диаграммы Фейнмана. Швингер (1918–1994), которому вычислительные трудности были нипочём, диаграмм Фейнмана не любил и несколько свысока писал о них: «Как компьютерный чип в более недавние годы, диаграмма Фейнмана несла вычисления в массы». К сожалению, до самых широких масс, в отличие от чипа, диаграммы Фейнмана не дошли.

5.8. Фейнман и диаграммы Фейнмана. По непонятным причинам диаграммы Фейнмана не дошли даже до знаменитых «Фейнмановских лекций по физике». Я убежден в том, что их необходимо довести до учеников средней школы, объясняя им основные идеи физики элементарных частиц. Это самый простой взгляд на микромир и на мир в целом. Если школьник владеет понятием потенциальной энергии (например, законом Ньютона, или законом Кулона), то диаграммы Фейнмана позволяют ему получать выражение для этой потенциальной энергии.

5.9. Виртуальные частицы и физические силовые поля. Фейнмановские диаграммы - это наиболее простой язык квантовой теории поля. (По крайней мере в тех случаях, когда взаимодействие не очень сильное и можно пользоваться теорией возмущений.) В большинстве книг по квантовой теории поля частицы рассматриваются как квантовые возбуждения полей, что требует знакомства с формализмом вторичного квантования. На языке же диаграмм Фейнмана поля заменяются виртуальными частицами.

Элементарные частицы обладают и корпускулярными, и волновыми свойствами. Причём в реальном состоянии они являются частицами материи, а в виртуальном состоянии они же являются переносчиками сил между материальными объектами. После введения виртуальных частиц понятие силы становится ненужным, а с понятием поля, если с ним не было знакомства раньше, возможно, следует знакомиться после того, как освоено понятие виртуальной частицы.

5.10. Элементарные взаимодействия *. Элементарные акты испускания и поглощения виртуальных частиц (вершины) характеризуются такими константами взаимодействия, как электрический заряд e в случае фотона, слабые заряды e/sin θ W в случае W-бозона и e/sin θ W cos θ W в случае Z-бозона (где θ W - угол Вайнберга), цветовой заряд g в случае глюонов, и величина √G в случае гравитона, где G - константа Ньютона. (См. гл. 6–10.) Электромагнитное взаимодействие рассмотрено ниже в гл. 7. Слабое взаимодействие - в гл. 8. Сильное - в гл. 9.

А начнём мы в следующей гл. 6 с гравитационного взаимодействия.

6. Гравитационное взаимодействие

6.1. Гравитоны. Я начну с частиц, которые пока не открыты и наверняка не будут открыты в обозримом будущем. Это частицы гравитационного поля - гравитоны. Не открыты пока не только гравитоны, но и гравитационные волны (и это в то время, как электромагнитные волны буквально пронизывают нашу жизнь). Это обусловлено тем, что при низких энергиях гравитационное взаимодействие очень слабо. Как мы увидим, теория гравитонов позволяет понять все известные свойства гравитационного взаимодействия.

6.2. Обмен гравитонами. На языке диаграмм Фейнмана гравитационное взаимодействие двух тел осуществляется обменом виртуальными гравитонами между составляющими эти тела элементарными частицами. На рис. 3 гравитон испускается частицей с 4-импульсом p 1 и поглощается другой частицей с 4-импульсом p 2 . В силу сохранения 4-импульса, q=p 1 − p′ 1 =p′ 2 −p 2 , где q - 4-импульс гравитона.

Распространение виртуального гравитона (ему, как и любой виртуальной частице, отвечает пропагатор) изображено на рисунке пружинкой.

6.3. Атом водорода в гравитационном поле Земли. На рис. 4 изображена сумма диаграмм, на которых атом водорода с 4-импульсом p 1 обменивается гравитонами со всеми атомами Земли, обладающими суммарным 4-импульсом p 2 . И в этом случае q = p 1 − p′ 1 = p′ 2 − p 2 , где q - суммарный 4-импульс виртуальных гравитонов.

6.4. О массе атома. В дальнейшем при рассмотрении гравитационного взаимодействия мы будем пренебрегать массой электрона по сравнению с массой протона, а также пренебрегать разностью масс протона и нейтрона и энергией связи нуклонов в атомных ядрах. Так что масса атома это примерно сумма масс нуклонов в атомном ядре.

6.5. Коэффициент усиления *. Число нуклонов Земли N E ≈ 3,6·10 51 равно произведению числа нуклонов в одном грамме земного вещества, т. е. числа Авогадро N A ≈ 6·10 23 , на массу Земли в граммах ≈ 6·10 27 . Поэтому диаграмма рис. 4 представляет собой сумму 3,6·10 51 диаграмм рис. 3, что отмечено утолщением линий Земли и виртуальных гравитонов на рис. 4. Кроме того, «гравитонная пружина», в отличие от пропагатора одного гравитона, сделана на рис. 4 серой. Она как бы содержит 3,6·10 51 гравитонов.

6.6. Яблоко Ньютона в гравитационном поле Земли. На рис. 5 все атомы яблока, обладающие суммарным 4-импульсом p 1 , взаимодействуют со всеми атомами Земли, обладающими суммарным 4-импульсом p 2 .

6.7. Число диаграмм *. Напомню, что один грамм обычного вещества содержит N A = 6·10 23 нуклонов. Число нуклонов в 100-граммовом яблоке N a = 100N A = 6·10 25 . Масса Земли 6·10 27 г, и следовательно, число нуклонов Земли N E = 3,6 · 10 51 . Разумеется, утолщение линий на рис. 5 ни в какой мере не отвечает огромному числу нуклонов яблока N a , нуклонов Земли N E и гораздо большему, просто фантастическому числу фейнмановских диаграмм N d = N a N E = 2,2·10 77 . Ведь каждый нуклон яблока взаимодействует с каждым нуклоном Земли. Чтобы подчеркнуть колоссальное число диаграмм, пружина на рис. 5 сделана темной.

Хотя взаимодействие гравитона с отдельной элементарной частицей очень мало, сумма диаграмм для всех нуклонов Земли создаёт значительное притяжение, которое мы ощущаем. Универсальная гравитация притягивает Луну к Земле, их обеих к Солнцу, все звёзды в нашей Галактике и все галактики друг к другу.

6.8. Фейнмановская амплитуда и её фурье-образ ***.

Фейнмановской диаграмме гравитационного взаимодействия двух медленных тел с массами m 1 и m 2 соответствует фейнмановская амплитуда

где G - константа Ньютона, a q - 3-импульс, переносимый виртуальными гравитонами. (Величина 1/q 2 , где q - 4-импульс, называется гравитонным пропагатором. В случае медленных тел энергия практически не передается и потому q 2 = −q 2 .)

Чтобы перейти от импульсного пространства к конфигурационному (координатному), надо взять фурье-образ амплитуды A(q )

Величина A(r ) даёт потенциальную энергию гравитационного взаимодействия нерелятивистских частиц и определяет движение релятивистской частицы в статическом гравитационном поле.

6.9. Потенциал Ньютона *. Потенциальная энергия двух тел с массой m 1 и m 2 равна

где G - константа Ньютона, a r - расстояние между телами.

Эта энергия заключена в «пружине» виртуальных гравитонов на рис. 5. Взаимодействие, потенциал которого спадает как 1/r , называется дальнодействующим. Используя фурье-преобразование, можно увидеть, что гравитация - дальнодействующая, потому что гравитон безмассов.

6.10. Потенциал типа потенциала Юкавы **. Действительно, если бы гравитон имел ненулевую массу m , то фейнмановская амплитуда для обмена им имела бы вид

и ей отвечал бы потенциал типа потенциала Юкавы с радиусом действия r ≈ 1/m :

6.11. О потенциальной энергии **. В нерелятивистской механике Ньютона кинетическая энергия частицы зависит от её скорости (импульса), а потенциальная только от её координат, т. е. от положения в пространстве. В релятивистской механике сохранить такое требование нельзя, поскольку само взаимодействие частиц зачастую зависит от их скоростей (импульсов) и, следовательно, от кинетической энергии. Однако для обычных, достаточно слабых гравитационных полей изменение кинетической энергии частицы мало по сравнению с её полной энергией, и поэтому этим изменением можно пренебречь. Полную энергию нерелятивистской частицы в слабом гравитационном поле можно записать в виде ε = E kin + E 0 + U .

6.12. Универсальность гравитации. В отличие от всех других взаимодействий, гравитация обладает замечательным свойством универсальности. Взаимодействие гравитона с любой частицей не зависит от свойств этой частицы, а зависит только от величины энергии, которой частица обладает. Если эта частица медленная, то её энергия покоя E 0 = mc 2 , заключённая в её массе, намного превышает её кинетическую энергию. И потому её гравитационное взаимодействие пропорционально её массе. Но для достаточно быстрой частицы её кинетическая энергия намного больше её массы. В этом случае её гравитационное взаимодействие от массы практически не зависит и пропорционально её кинетической энергии.

6.13. Спин гравитона и универсальность гравитации **. Более точно, испускание гравитона пропорционально не простоэнергии, а тензору энергии-импульса частицы. А это, в своюочередь, обусловлено тем, что спин гравитона равен двум. Пусть4-импульс частицы до испускания гравитона был p 1 , а послеиспускания p 2 . Тогда импульс гравитона равен q = p 1 − p 2 . Есливвести обозначение p = p 1 + p 2 , то вершина испускания гравитона будет иметь вид

где h αβ - волновая функция гравитона.

6.14. Взаимодействие гравитона с фотоном **. Особенно наглядно это видно на примере фотона, масса которого равна нулю. Экспериментально доказано, что когда фотон летит с нижнего этажа здания на верхний этаж, его импульс уменьшается под действием притяжения Земли. Доказано также, что луч света далёкой звезды отклоняется гравитационным притяжением Солнца.

6.15. Взаимодействие фотона с Землёй **. На рис. 6 показан обмен гравитонами между Землёй и фотоном. Этот рисунок условно представляет собой сумму рисунков гравитонных обменов фотона со всеми нуклонами Земли. На нём земная вершина получается из нуклонной умножением на число нуклонов в Земле N E c соответствующей заменой 4-импульса нуклона на 4-импульс Земли (см. рис. 3).

6.16. Взаимодействие гравитона с гравитоном ***. Поскольку гравитоны несут энергию,они сами должны испускать и поглощать гравитоны. Отдельных реальных гравитонов мы не видели и никогда не увидим. Тем не менее взаимодействие междувиртуальными гравитонами приводит к наблюдаемым эффектам.На первый взгляд вклад трёх виртуальных гравитонов в гравитационное взаимодействие двух нуклонов слишком мал, чтобы егоможно было обнаружить (см. рис. 7).

6.17. Вековая прецессия Меркурия **. Однако этот вклад проявляется в прецессии перигелия орбиты Меркурия. Вековая прецессия Меркурия описывается суммой однопетлевых гравитонных диаграмм притяжения Меркурия к Солнцу (рис. 8).

6.18. Коэффициент усиления для Меркурия **. Отношение масс Меркурия и Земли равно 0,055. Так что число нуклонов в Меркурии N M = 0,055 N E = 2·10 50 . Масса Солнца M S = 2·10 33 г. Так что число нуклонов в Солнце N S = N A M S = 1,2·10 57 . А число диаграмм, описывающих гравитационное взаимодействие нуклонов Меркурия и Солнца, N dM = 2,4·10 107 .

Если потенциальная энергия притяжения Меркурия к Солнцу равна U = GM S M M /r , то после учёта обсуждаемой поправки на взаимодействие виртуальных гравитонов друг с другом она умножается на коэффициент 1 − 3GM S /r . Мы видим, что поправка к потенциальной энергии составляет −3G 2 M S 2 M M /r 2 .

6.19. Орбита Меркурия **. Радиус орбиты Меркурия a = 58·10 6 км. Период обращения 88 земных суток. Эксцентриситет орбиты e = 0,21. Из-за обсуждаемой поправки за один оборот большая полуось орбиты поворачивается на угол 6πGM S /a (1 − e 2), т. е. порядка одной десятой угловой секунды, а за 100 земных лет поворачивается на 43"".

6.20. Гравитационный лэмбовский сдвиг **. Всякий, кто изучал квантовую электродинамику, сразу увидит, что диаграмма рис. 7 похожа на треугольную диаграмму, описывающую сдвиг частоты (энергии) уровня 2S 1/2 относительно уровня 2P 1/2 в атоме водорода (там треугольник состоит из одной фотонной и двух электронных линий). Этот сдвиг измерили в 1947 г. Лэмб и Ризерфорд и установили, что он равен 1060 МГц (1,06 ГГц).

Это измерение положило начало цепной реакции теоретических и экспериментальных работ, приведших к созданию квантовой электродинамики и фейнмановских диаграмм. Частота прецессии Меркурия на 25 порядков меньше.

6.21. Классический или квантовый эффект? **. Хорошо известно, что лэмбовский сдвиг энергии уровня - это чисто квантовый эффект, в то время как прецессия Меркурия - чисто классический эффект. Каким образом могут они описываться похожими фейнмановскими диаграммами?

Чтобы ответить на этот вопрос, надо вспомнить соотношение E = ħω и учесть, что преобразование Фурье при переходе от импульсного пространства к конфигурационному в разд. 6.8 содержит e i qr / ħ . Кроме того, следует учесть, что в электромагнитном треугольнике лэмбовского сдвига только одна линия безмассовой частицы (фотона), а две других - это пропагаторы электрона. Поэтому характерные расстояния в нём определяются массой электрона (комптоновской длиной волны электрона). А в треугольнике прецессии Меркурия имеются два пропагатора безмассовой частицы (гравитона). Это обстоятельство, обусловленное трёхгравитонной вершиной, и приводит к тому, что гравитационный треугольник даёт вклад на несравненно больших расстояниях, чем электромагнитный. В этом сравнении проявляется мощь квантовой теории поля в методе фейнмановских диаграмм, позволяющих просто понимать и рассчитывать широкий круг явлений, как квантовых, так и классических.

7. Электромагнитное взаимодействие

7.1. Электрическое взаимодействие. Электрическое взаимодействие частиц осуществляется обменом виртуальными фотонами, как на рис. 1, 9.

Фотоны, как и гравитоны, тоже безмассовые частицы. Так что электрическое взаимодействие тоже дальнодействующее:

Почему же оно не столь универсально, как гравитация?

7.2. Положительные и отрицательные заряды. Во-первых, потому, что существуют электрические заряды двух знаков. И во-вторых, потому, что существуют нейтральные частицы, которые вообще не имеют электрического заряда (нейтрон, нейтрино, фотон...). Частицы с зарядами противоположных знаков, как электрон и протон, притягиваются друг к другу. Частицы с одинаковыми зарядами отталкиваются. В результате атомы и состоящие из них тела в основном электронейтральны.

7.3. Нейтральные частицы. Нейтрон содержит u -кварк с зарядом +2e /3 и два d -кварка с зарядом −e /3. Так что суммарный заряд нейтрона равен нулю. (Напомним, что протон содержит два u -кварка и один d -кварк.) Истинно элементарными частицами, не имеющими электрического заряда, являются фотон, гравитон, нейтрино, Z -бозон и бозон Хиггса.

7.4. Кулоновский потенциал. Потенциальная энергия притяжения электрона и протона, находящихся на расстоянии r друг от друга, равна

7.5. Магнитное взаимодействие. Магнитное взаимодействие является не столь дальнодействующим, как электрическое. Оно спадает как 1/r 3 . Оно зависит не только от расстояния между двумя магнитами, но и от их взаимной ориентации. Хорошо известный пример - взаимодействие стрелки компаса с полем магнитного диполя Земли. Потенциальная энергия взаимодействия двух магнитных диполей μ 1 и μ 2 равна

где n = r /r .

7.6. Электромагнитное взаимодействие. Величайшим достижением XIX столетия было открытие того, что электрические и магнитные силы - это два различных проявления одной и той же электромагнитной силы. В 1821 г. М. Фарадей (1791–1867) исследовал взаимодействие магнита и проводника с током. Спустя десятилетие он установил законы электромагнитной индукции при взаимодействии двух проводников. В последующие годы он ввёл понятие электромагнитного поля и высказал идею об электромагнитной природе света. В 1870-х Дж. Максвелл (1831–1879) осознал, что электромагнитное взаимодействие ответственно за широкий класс оптических явлений: испускание, преобразование и поглощение света, и написал уравнения, описывающие электромагнитное поле. Вскоре Г. Герц (1857–1894) открыл радиоволны, а В. Рентген (1845–1923) - Х-лучи. Вся наша цивилизация основана на проявлениях электромагнитных взаимодействий.

7.7. Объединение теории относительности и квантовой механики. Важнейшим этапом в развитии физики был 1928год, когда появилась статья П. Дирака (1902–1984), в которойон предложил квантовое и релятивистское уравнение для электрона. Это уравнение содержало магнитный момент электронаи указывало на существование античастицы электрона - позитрона, открытого через несколько лет. После этого квантоваямеханика и теория относительности объединились в квантовуютеорию поля.

То, что электромагнитные взаимодействия вызваны испусканием и поглощением виртуальных фотонов, стало полностью ясно лишь в середине XX века с появлением диаграмм Фейнмана, т. е. после того, как чётко сформировалось понятие виртуальной частицы.

8. Слабое взаимодействие

8.1. Ядерные взаимодействия. В начале XX века были открыты атом и его ядро и α -, β - и γ -лучи, испускаемые радиоактивными ядрами. Как оказалось, γ -лучи - это фотоны очень высокой энергии, β -лучи - это высокоэнергичные электроны, α -лучи - ядра гелия. Это привело к открытию двух новых типов взаимодействий - сильного и слабого. В отличие от гравитационного и электромагнитного взаимодействий, сильное и слабое взаимодействия являются короткодействующими.

В дальнейшем было установлено,что они ответственны за преобразование водорода в гелий в нашем Солнце и других звёздах.

8.2. Заряженные токи *. Слабое взаимодействие ответственно за превращение нейтрона в протон с испусканием электрона и электронного антинейтрино. В основе большого класса процессов слабого взаимодействия лежат превращения кварков одного типа в кварки другого типа с испусканием (или поглощением) виртуальных W -бозонов: u , c , t d , s , b . Аналогично при испускании и поглощении W -бозонов происходят переходы между заряженными лептонами и соответствующими нейтрино:

e ν e , μ ν μ , τ ↔ ν τ . В равной степени происходят и переходы типа dˉu W и eˉν e ↔ W . Во всех этих переходах с участием W -бозонов участвуют так называемые заряженные токи, меняющие на единицу заряды лептонов и кварков. Слабое взаимодействие заряженных токов короткодействующее, оно описывается потенциалом Юкавы e −mWr /r , так что эффективный радиус у него r ≈ 1/m W .

8.3. Нейтральные токи *. В 1970-х годах были открыты процессы слабого взаимодействия нейтрино, электронов и нуклонов, обусловленные так называемыми нейтральными токами. В 1980-х годах было экспериментально установлено, что взаимодействия заряженных токов происходят путем обмена W -бозонами, а взаимодействия нейтральных токов - путём обмена Z -бозонами.

8.4. Нарушение P - и CP -чётности *. Во второй половине 1950-х годов было открыто нарушение пространственной чётности P и зарядовой чётности C в слабых взаимодействиях. В 1964 г. были открыты слабые распады, нарушающие сохранение CP -симметрии. В настоящее время механизм нарушения CP -симметрии изучается в распадах мезонов, содержащих b -кварки.

8.5. Осцилляции нейтрино *. Последние два десятилетия внимание физиков приковано к измерениям, проводимым на подземных килотонных детекторах в Камиока (Япония) и Садбери (Канада). Эти измерения показали, что между тремя сортами нейтрино ν e , ν μ , ν τ происходят в вакууме взаимные переходы (осцилляции). Природа этих осцилляций выясняется.

8.6. Электрослабое взаимодействие. В 1960-х годах была сформулирована теория, согласно которой электромагнитное и слабое взаимодействия являются различными проявлениями единого электрослабого взаимодействия. Если бы имела место строгая электрослабая симметрия, то массы W - и Z -бозонов были бы равны нулю подобно массе фотона.

8.7. Нарушение электрослабой симметрии. В рамках Стандартной модели бозон Хиггса нарушает электрослабую симметрию и объясняет таким образом, почему фотон безмассов, а слабые бозоны массивны. Он же даёт массы лептонам, кваркам и самому себе.

8.8. Что надо узнать о хиггсе. Одной из основных задач Большого адронного коллайдера LHC является открытие бозона Хиггса (который называют просто хиггс и обозначают h или H ) и последующее установление его свойств. В первую очередь измерение его взаимодействий с W - и Z -бозонами, с фотонами, а также его самовзаимодействия, т. е. изучение вершин, содержащих три и четыре хиггса: h 3 и h 4 , и его взаимодействия с лептонами и кварками, особенно с топ-кварком. В рамках Стандартной модели для всех этих взаимодействий существуют чёткие предсказания. Их экспериментальная проверка представляет очень большой интерес с точки зрения поисков «новой физики» за пределами Стандартной модели.

8.9. А если хиггса нет? Если же окажется, что в интервале масс порядка нескольких сот ГэВ хиггс не существует, то это будет означать, что при энергиях выше ТэВ лежит новая, абсолютно неизведанная область, где взаимодействия W - и Z -бозонов становятся непертурбативно сильными, т. е. не могут описываться теорией возмущений. Исследования этой области принесут много сюрпризов.

8.10. Лептонные коллайдеры будущего. Для выполнения всей этой программы исследований в дополнение к LHC возможно придётся построить лептонные коллайдеры:

ILC (International Linear Collider) с энергией столкновения 0,5 ТэВ,

или CLIC (Compact Linear Collider) с энергией столкновения 1 ТэВ,

или MC (Muon Collider) с энергией столкновения 3 ТэВ.

8.11. Линейные электрон-позитронные коллайдеры. ILC - Международный линейный коллайдер, в котором должнысталкиваться электроны с позитронами, а также фотоныс фотонами. Решение о его строительстве может быть принятотолько после того, как станет ясно, существует ли хиггс и каковаего масса. Одно из предлагаемых мест строительства ILC -окрестности Дубны. CLIC - Компактный линейный коллайдерэлектронов и позитронов. Проект разрабатывается в ЦЕРН.

8.12. Мюонный коллайдер. МС - Мюонный коллайдер был впервые задуман Г. И. Будкером (1918–1977). В 1999 г. в Сан-Франциско состоялась пятая Международная конференция «Физический потенциал и развитие мюонных коллайдеров и нейтринных фабрик». В настоящее время проект МС разрабатывается в Фермиевской национальной лаборатории и может быть осуществлён лет через 20.

9. Сильное взаимодействие

9.1. Глюоны и кварки. Сильное взаимодействие держит нуклоны (протоны и нейтроны) внутри ядра. В его основе взаимодействие глюонов с кварками и взаимодействие глюонов с глюонами. Именно самодействие глюонов приводит к тому, что несмотря на то, что масса глюона равна нулю, так же, как равны нулю массы фотона и гравитона, обмен глюонами не приводит к глюонному дальнодействию, подобному фотонному и гравитонному. Более того, оно приводит к отсутствию свободных глюонов и кварков. Это обусловлено тем, что сумма одноглюонных обменов заменяется глюонной трубкой или нитью. Взаимодействие нуклонов в ядре подобно силам Ван-дер-Ваальса между нейтральными атомами.

9.2. Конфайнмент и асимптотическая свобода. Явление невылетания глюонов и кварков из адронов называют словом конфайнмент. Обратной стороной динамики, приводящей к конфайнменту является то, что на очень малых расстояниях глубоко внутри адронов взаимодействие между глюонами и кварками постепенно спадает. Кварки как бы становятся свободными на малых расстояниях. Это явление называют термином асимптотическая свобода.

9.3. Цвета кварков. Явление конфайнмента является следствием того, что каждый из шести кварков существует как бы в виде трех «цветовых» разновидностей. Кварки обычно «раскрашивают» в желтый, синий и красный цвета. Антикварки раскрашивают в дополнительные цвета: фиолетовый, оранжевый, зелёный. Всеми этими цветами обозначают своеобразные заряды кварков - «многомерные аналоги» электрического заряда, ответственные за сильные взаимодействия. Разумеется, никакой связи, кроме метафорической, между цветами кварков и обычными оптическими цветами нет.

9.4. Цвета глюонов. Ещё более многочисленно семейство цветных глюонов: их восемь, из которых два идентичны своим античастицам, а остальные шесть - нет. Взаимодействия цветовых зарядов описываются квантовой хромодинамикой и определяют свойства протона, нейтрона, всех атомных ядер и свойства всех адронов. То, что глюоны несут цветовые заряды, приводит к явлению конфайнмента глюонов и кварков, заключающегося в том, что цветные глюоны и кварки не могут вырваться из адронов. Ядерные силы между бесцветными (белыми) адронами представляют собой слабые отголоски могучих цветовых взаимодействий внутри адронов. Это похоже на малость молекулярных связей по сравнению с внутриатомными.

9.5. Массы адронов. Массы адронов вообще и нуклонов в частности обусловлены глюонным самодействием. Таким образом, масса всего видимого вещества, составляющего 4–5% энергии Вселенной, обусловлена именно самодействием глюонов.

10. Стандартная модель и за её пределами

10.1. 18 частиц Стандартной модели. Все известные фундаментальные частицы естественно распадаются на три группы:

6 лептонов (спин 1/2):
3 нейтрино: ν e , ν μ , ν τ ;
3 заряженных лептона: e , μ , τ ;
6 кварков (спин 1/2):
u , c , t ,
d , s , b ;
6 бозонов :
g̃ - гравитон (спин 2),
γ , W , Z , g - глюоны (спин 1),
h - хиггс (спин 0).

10.2. За пределами Стандартной модели. 96% энергии Вселенной находится за пределами Стандартной модели и ждёт своего открытия и изучения. Есть несколько основных предположений о том, как может выглядеть новая физика (см. Ниже пункты 10.3–10.6).

10.3. Великое объединение. Объединению сильного и электрослабого взаимодействия посвящено огромное число работ, в основном теоретических. В большинстве из них предполагается, что оно происходит при энергиях порядка 10 16 ГэВ. Такое объединение должно приводить к распаду протона.

10.4. Суперсимметричные частицы. Согласно идее суперсимметрии, впервые зародившейся в ФИАН, у каждой «нашей» частицы есть суперпартнер, спин которого отличается на 1/2: 6 скварков и 6 слептонов со спином 0, хиггсино, фотино, вино и зино со спином 1/2, гравитино со спином 3/2. Массы этих суперпартнёров должны быть существенно больше, чем у наших частиц. Иначе их давно бы открыли. Некоторые из суперпартнёров, возможно, будут открыты, когда заработает Большой адронный коллайдер.

10.5. Суперструны. Развивает гипотезу о суперсимметрии гипотеза о существовании суперструн, которые живут на очень малых расстояниях порядка 10 −33 см и отвечающих им энергиях 10 19 ГэВ. Многие физики-теоретики надеются, что именно на основе представлений о суперструнах удастся построить единую теорию всех взаимодействий, не содержащую свободных параметров.

10.6. Зеркальные частицы. Согласно идее о зеркальной материи, впервые зародившейся в ИТЭФ, у каждой нашей частицы есть зеркальный двойник, и существует зеркальный мир, который только очень слабо связан с нашим миром.

10.7. Тёмная материя. Только 4–5% всей энергии во Вселенной существует в виде массы обычного вещества. Порядка 20% энергии вселенной заключено в так называемой тёмной материи, состоящей, как думают, из суперчастиц, или зеркальных частиц, или каких-то других неизвестных частиц. Если частицы тёмной материи гораздо тяжелее обычных частиц и если, сталкиваясь друг с другом в космосе, они аннигилируют в обычные фотоны, то эти фотоны высокой энергии могут быть зарегистрированы специальными детекторами в космосе и на Земле. Выяснение природы тёмной материи является одной из основных задач физики.

10.8. Тёмная энергия. Но подавляющая часть энергии Вселенной (порядка 75%), обусловлена так называемой тёмной энергией. Она «разлита» по вакууму и расталкивает скопления галактик. Ее природа пока непонятна.

11. Элементарные частицы в России и мире

11.1. Указ Президента РФ. 30 сентября 2009 г. был издан Указ Президента РФ «О дополнительных мерах по реализации пилотного проекта по созданию Национального исследовательского центра “Курчатовский институт”». Указ предусматривает участие в проекте следующих организаций: Петербургского института ядерной физики, Института физики высоких энергий и Института теоретической и экспериментальной физики. Указ предусматривает также «включение указанного учреждения, как наиболее значимого учреждения науки, в ведомственную структуру расходов федерального бюджета в качестве главного распорядителя бюджетных средств». Этот Указ может способствовать возвращению физики элементарных частиц в число приоритетных направлений развития науки в нашей стране.

11.2. Слушания в Конгрессе США 1. 1 октября 2009 г. состоялись слушания в подкомитете по энергии и окружающей среде комитета по науке и технологии Палаты представителей США по теме «Исследования природы материи, энергии, пространства и времени». Ассигнования Департамента энергии на эту программу в 2009 г. составляют 795,7 млн долларов. Профессор Гарвардского университета Лиза Рендалл изложила взгляды на материю, энергию и происхождение Вселенной с точки зрения будущей теории струн. Директор Фермиевской национальной лаборатории (Батавия) Пьер Оддоне рассказал о состоянии физики частиц в США, и в частности, о предстоящем завершении работы Тэватрона и начале совместной работы ФНАЛ и подземной лаборатории DUSEL по изучению свойств нейтрино и редких процессов. Он подчеркнул важность участия американских физиков в проектах по физике высоких энергий в Европе (LHC), Японии (JPARC), Китае (ВЕРС) и международном космическом проекте (GLAST, названном недавно именем Ферми).

11.3. Слушания в Конгрессе США 2. Директор Национальной Лаборатории имени Джеферсона Хью Монтгомери говорил о вкладе этой Лаборатории в ядерную физику, в ускорительные технологии и в образовательные программы. Директор научного отдела по физике высоких энергий Департамента энергии Деннис Ковар рассказал о трёх основных направлениях по физике высоких энергий:

1) ускорительные исследования при максимальных энергиях,

2) ускорительные исследования при максимальных интенсивностях,

3) наземные и спутниковые исследования космоса с целью выяснения природы тёмной материи и тёмной энергии,

и трёх основных направлениях по ядерной физике:

1) изучение сильных взаимодействий кварков и глюонов,

2) изучение того, как из протонов и нейтронов образовались атомные ядра,

3) изучение слабых взаимодействий с участием нейтрино.

12. О фундаментальной науке

12.1. Что такое фундаментальная наука. Из изложенного выше текста ясно, что я, как и большинство научных работников, называю фундаментальной наукой ту часть науки, которая устанавливает наиболее фундаментальные законы природы. Эти законы лежат в фундаменте пирамиды науки или отдельных её этажей. Они определяют долговременное развитие цивилизации. Существуют, однако, люди, которые фундаментальной наукой называют те разделы науки, которые оказывают наибольшее непосредственное влияние на сиюминутные достижения в развитии цивилизации. Мне лично кажется, что эти разделы и направления лучше называть прикладной наукой.

12.2. Корни и плоды. Если фундаментальную науку можно сравнить с корнями дерева, то прикладную можно сравнить с его плодами. Такие важнейшие технологические прорывы, как создание мобильных телефонов или оптоволоконной связи, это плоды науки.

12.3. А. И. Герцен о науке. В 1845 г. Александр Иванович Герцен (1812–1870) опубликовал в журнале «Отечественные записки» замечательные «Письма об изучении природы». В конце первого письма он написал: «Наука кажется трудною не потому, чтоб она была в самом деле трудна, а потому, что иначе не дойдёшь до её простоты, как пробившись сквозь тьму тем готовых понятий, мешающих прямо видеть. Пусть входящие вперёд знают, что весь арсенал ржавых и негодных орудий, доставшихся нам по наследству от схоластики, негоден, что надобно пожертвовать вне науки составленными воззрениями, что, не отбросив все полулжи , которыми для понятности облекают полуистины , нельзя войти в науку, нельзя дойти до целой истины».

12.4. О сокращении школьных программ. Современные программы по физике в школе вполне могут включить в себя активное владение элементами теории элементарных частиц, теории относительности и квантовой механики, если сократить в них те разделы, которые имеют в основном описательный характер и увеличивают «эрудицию» ребенка, а не понимание окружающего мира и умение жить и творить.

12.5. Заключение. Было бы правильно, чтобы Президиум РАН отметил важность раннего приобщения молодёжи к мировоззрению, основанному на достижениях теории относительности и квантовой механики, и поручил Комиссиям Президиума РАН по учебникам (председатель - вице-президент В.В. Козлов) и по образованию (председатель - вице-президент В. А. Садовничий) подготовить предложения по совершенствованию преподавания современной фундаментальной физики в средней и высшей школе.

10.2. ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ ЗАКОНЫ

Фундаментальные физические законы — это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе. Различные формы движения материи описываются различными фундаментальными теориями. Каждая из этих теорий описывает вполне определенные явления: механическое или тепловое движение, электромагнитные явления.
Существуют более общие законы в структуре фундаментальных физических теорий, охватывающие все формы движения материи и все процессы. Это законы симметрии, или инвариантности, и связанные с ними законы сохранения физических величин.

10.2.1. Законы сохранения физических величин
10.2.1.1. Закон сохранения массы
10.2.1.2. Закон сохранения импульса
10.2.1.3. Закон сохранения заряда
10.2.1.4. Закон сохранения энергии в механических процессах

10.2.1. Законы сохранения физических величин

Законы сохранения физических величин — это утверждения, согласно которым численные значения этих величин не меняются со временем в любых процессах или классах процессов. Фактически во многих случаях законы сохранения просто вытекают из принципов симметрии.
Идея сохранения появилась сначала как чисто философская догадка о наличии неизменного (стабильного) в вечно меняющемся мире. Еще античные философы-материалисты пришли к понятию материи как неуничтожимой и несотворимой основы всего сущего. С другой стороны, наблюдение постоянных изменений в природе приводило к представлению о вечном движении материи как важном ее свойстве. С появлением математической формулировки механики на этой основе появились законы сохранения.
Законы сохранения тесно связаны со свойствами симметрии физических систем. При этом симметрия понимается как инвариантность физических законов относительно некоторой группы преобразований входящих к них величин. Наличие симметрии приводит к тому, что для данной системы существует сохраняющаяся физическая величина. Если известны свойства симметрии системы, как правило, можно найти для нее закон сохранения и наоборот.
Таким образом, законы сохранения:
1. Представляют наиболее общую форму детерминизма.
2. Подтверждают структурное единство материального мира.
3. Позволяют сделать заключение о характере поведения системы.
4. Обнаруживают существование глубокой связи между разнообразными формами движения материи.
Важнейшими законами сохранения, справедливыми для любых изолированных систем, являются:
- закон сохранения и превращения энергии;
- закон сохранения импульса;
- закон сохранения электрического заряда;
- закон сохранения массы.
Кроме всеобщих существуют законы сохранения, справедливые лишь для ограниченного класса систем и явлений. Так, например, существуют законы сохранения, действующие только в микромире. Это:
- закон сохранения барионного или ядерного заряда;
- закон сохранения лептонного заряда;
- закон сохранения изотопического спина;
- закон сохранения странности.
В современной физике обнаружена определенная иерархия законов сохранения и принципов симметрии. Одни из этих принципов выполняются при любых взаимодействиях, другие же — только при сильных. Эта иерархия отчетливо проявляется во внутренних принципах симметрии, которые действуют в микромире.
Рассмотрим важнейшие законы сохранения.

10.2.1.1. Закон сохранения массы

Бесконечно разнообразны превращения, изменения вещества в природе. Исследователей волновал вопрос: сохраняется ли вещество при этих изменениях? Каждому из нас приходилось наблюдать, как со временем изнашивается, уменьшается в размерах любая вещь, даже стальная. Но значит ли это, что мельчайшие частички металла исчезают бесследно? Нет, они только теряются, разлетаются в разные стороны, выбрасываются с сором, улетают, создавая пыль.
В природе происходят и иные превращения. Вы, например, курите сигарету. Проходит несколько минут — и от табака ничего не остается, не считая маленькой кучки пепла и легкого голубоватого дыма, рассеявшегося в воздухе. Или, например, горит свеча. Постепенно она становится все меньше и меньше. Здесь не остается даже пепла. Сгорая без остатка, свеча и то, из чего она состоит, испытывают химическое превращение вещества. Частицы табака и свеча не разлетаются в стороны, не теряются постепенно в разных местах. Они сгорают и внешне пропадают бесследно.
Наблюдая природу, люди давно обратили внимание и на другие явления, когда вещество как бы возникает из “ничего”. Так, например, из маленького семени вырастает в цветочном горшке большое растение, а вес земли, заключенной в горшке, остается почти прежним. Может ли в действительности что-то существующее в мире исчезнуть или, наоборот, появиться из ничего? Иными словами — уничтожима или неуничтожима материя, из которой строится все многообразие нашего мира?
За 2400 лет до н. э. знаменитый философ Древней Греции Демокрит писал, что: “Из ничего ничто произойти не может, ничто существующее не может быть уничтожимо”.
Значительно позже, в XVI—XVII вв. эта мысль возродилась и высказывалась уже многими учеными. Однако такие высказывания были лишь догадкой, а не научной теорией, подтвержденной опытами. Впервые доказал и подтвердил это положение опытом великий русский ученый М.В. Ломоносов.
Ломоносов был твердо убежден в неуничтожимости материи, в том, что в мире ничто не может исчезнуть бесследно. При любых изменениях веществ, химических взаимодействиях — соединяются ли простые тела, образуя сложные, или, наоборот, сложные тела разлагаются на отдельные химические элементы — общее количество вещества остается неизменным. Другими словами, при всех изменениях должен оставаться неизменным общий вес вещества. Пусть в результате какой-либо реакции исчезают два взаимодействующих вещества и получается неизвестное третье — вес вновь образовавшегося соединения должен равняться весу первых двух.
Прекрасно понимая значение законов сохранения, неуничтожимости материи для науки, Ломоносов искал подтверждение своих мыслей. Он решил повторить опыты английского ученого XVII в. Р. Бойля.
Бойль интересовался вопросами изменения веса металла при нагревании. Он поставил такой опыт: в стеклянную реторту поместил кусочек металла и взвесил ее.
Затем, запаяв узкое горлышко сосуда, нагрел его на огне. Через два часа Бойль снял сосуд с пламени, обломил горлышко реторты и, охладив ее, взвесил. Металл увеличился в весе.
Причину Бойль видел в том, что через стекло в сосуд проникают мельчайшие частицы “материи огня” и соединяются с металлом. Во времена Бойля и Ломоносова непонятные явления природы ученые объясняли с помощью различных неуловимых “материй”, но что они из себя представляют — сказать не могли. Ломоносов же не признавал существования таинственных “материй”. Он был уверен, что причина увеличения веса заключается в другом, и решил доказать, что нет никакой “тонкой всепроникающей материи огня”, а также что при химических превращениях общий вес вещества участвующих в реакции элементов остается неизменным.
Ломоносов повторил опыт Бойля и получил тот же результат: вес металла увеличился. Затем он видоизменил опыт: после нагревания реторты на огне и охлаждения ее взвешивает сосуд, не отламывая горлышка. Так он доказал, что “без допущения внешнего воздуха вес сожженного металла останется в одной мере, никакой материи огня в реторту не проникает”.
Увеличение веса в случае, когда реторта перед взвешиванием вскрывалась, Ломоносов объяснял зависимостью от поглощения воздуха металлом. Теперь мы знаем, что при нагревании металлы окисляются, соединяются с кислородом. В опыте Бойля металл берет кислород из воздуха, находящегося в закрытой реторте. При этом его вес увеличивается ровно настолько, насколько уменьшается вес воздуха в реторте. Благодаря этому общий вес закрытой реторты и помещенного в ней тела не изменяется. Хотя здесь и происходит окисление, общее количество вещества не убывает и не прибывает — вес веществ, участвующих в реакции, не изменяется. Но при открытии реторты на место кислорода воздуха, который был поглощен металлом, внутрь колбы ворвется наружный воздух, в результате чего вес реторты увеличится.
Так М.В. Ломоносов открыл закон сохранения вещества, или, как его называют, закон сохранения массы. Через 17 лет после Ломоносова этот закон подтвердил многочисленными опытами французский химик А. Лавуазье. В дальнейшем закон сохранения массы неоднократно подтверждался многочисленными и разнообразными опытами. В настоящее время он является одним из основных законов, лежащих в основе наук о природе.

10.2.1.2. Закон сохранения импульса

Покой и движения тела относительны, скорость движения зависит от выбора системы отсчета. По второму закону Ньютона, независимо от того, находилось ли тело в покое, или двигалось равномерно и прямолинейно, изменение его скорости движения может происходить только под действием силы, т.е. в результате взаимодействия с другими телами.
Имеется физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково, равная произведению массы тела на его скорость и называемая импульсом тела. Изменение импульса равно импульсу приложенной силы. Импульс тела является количественной характеристикой поступательного движения тел.
Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и электронов, элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел остается постоянной.
Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой. Таким образом, в замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса.
Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета. На законе сохранения импульса основано реактивное движение, его используют при расчете направленных взрывов, например, при прокладке туннелей в горах. Полеты в космос стали возможными благодаря использованию многоступенчатых ракет.

10.2.1.3. Закон сохранения заряда

Не все явления природы можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества, термодинамики. Эти науки ничего не говорят о природе сил, которые связывают отдельные атомы и молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенном расстоянии друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представлений о том, что в природе существуют электрические заряды.
Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении. Взаимодействие тел, обнаруживаемое при электризации, называется электромагнитным взаимодействием, а физическая величина, определяющая электромагнитное взаимодействие, — электрическим зарядом. Способность электрических зарядов притягиваться и отталкиваться говорит о наличии двух различных видов зарядов: положительных и отрицательных.
Электрические заряды могут появляться не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например, под воздействием силы (пьезоэффект). Но всегда в замкнутой системе, в которую не входят заряды, при любых взаимодействиях тел алгебраическая (т.е. с учетом знака) сумма электрических зарядов всех тел остается постоянной. Этот экспериментально установленный факт называется законом сохранения электрического заряда.
Нигде и никогда в природе не возникают и не исчезают электрические заряды одного знака. Появление положительного заряда всегда сопровождается появлением равного по абсолютному значению, но противоположного по знаку отрицательного заряда. Ни положительный, ни отрицательный заряды не могут исчезнуть в отдельности друг от друга, если равны по абсолютному значению.
Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц — электронов — от одних тел к другим. Как известно, в состав любого атома входят положительно заряженные ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.
Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе — равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.
Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, аннигилируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.

10.2.1.4. Закон сохранения энергии в механических процессах

Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энергия характеризует взаимодействующие тела, а кинетическая — движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля.
Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах.
Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается постоянной.
Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергий в равной количественной мере при взаимодействии тел.
Закон сохранения полной механической энергии в процессах с участием сил упругости и гравитационных сил является одним из основных законов механики. Знание этого закона упрощает решение многих задач, имеющих большое значение в практической жизни.
Например, для получения электроэнергии широко используется энергия рек. С этой целью строят плотины, перегораживают реки. Под действием сил тяжести вода из водохранилища за плотиной движется вниз по колодцу ускоренно и приобретает некоторую кинетическую энергию. При столкновении быстро движущегося потока воды с лопатками гидравлической турбины происходит преобразование кинетической энергии поступательного движения воды в кинетическую энергию вращательного движения роторов турбины, а затем с помощью электрического генератора — в электрическую энергию.
Механическая энергия не сохраняется, если между телами действуют силы трения. Автомобиль, двигавшийся по горизонтальному участку дороги после выключения двигателя, проходит некоторый путь и под действием сил трения останавливается. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. В результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.
Таким образом, при любых физических взаимодействиях энергия не возникает, а только превращается из одной формы в другую. Этот экспериментально установленный факт называется законом сохранения и превращения энергии.
Источники энергии на земле велики и разнообразны. Когда-то в древности люди знали только один источник энергии — мускульную силу и силу домашних животных. Энергия возобновлялась за счет пищи. Теперь большую часть работы делают машины, источником энергии для них служат различные виды ископаемого топлива: каменный уголь, торф, нефть, а также энергия воды и ветра.
Если проследить “родословную” всех этих разнообразных видов энергии, то окажется, что все они являются энергией солнечных лучей. Энергия окружающего нас космического пространства аккумулируется Солнцем в виде энергии атомных ядер, химических элементов, электромагнитных и гравитационных полей. Солнце, в свою очередь, обеспечивает Землю энергией, проявляющейся в виде энергии ветра и волн, приливов и отливов, в форме геомагнетизма, различного вида излучений (в том числе и радиоактивности недр и т.д.), мускульной энергии животного мира.
Геофизическая энергия высвобождается в виде природных стихийных явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организмах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасения энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран.
Любые формы энергии, превращаясь друг в друга посредством механического движения, химических реакций и электромагнитных излучений, в конце концов переходят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются прежде всего в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым “солнечным системам”. И все возвращается на круги своя.
Закон сохранения механической энергии был сформулирован немецким ученым А. Лейбницем. Затем немецкий ученый Ю.Р. Майер, английский физик Дж. Джоуль и немецкий ученый Г. Гельмгольц экспериментально открыли законы сохранения энергии в немеханических явлениях.
Таким образом, к середине XIX в. оформились законы сохранения массы и энергии, которые трактовались как законы сохранения материи и движения. В начале XX в. оба эти закона сохранения подверглись коренному пересмотру в связи с появлением специальной теории относительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изменению: полная энергия оказалась пропорциональна массе (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным образом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельности эти законы не выполняются, т.е. невозможно охарактеризовать количество материи, не принимая во внимание ее движение и взаимодействие.
Эволюция закона сохранения энергии показывает, что законы сохранения, будучи почерпнутыми из опыта, нуждаются время от времени в экспериментальной проверке и уточнении. Нельзя быть уверенным, что с расширением пределов человеческого познания данный закон или его конкретная формулировка останутся справедливыми. Закон сохранения энергии, все более уточняясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.

10.2.1.5. Законы сохранения в микромире

Большую роль законы сохранения играют в квантовой теории, в частности, в физике элементарных частиц. Законы сохранения определяют правила отбора, нарушение которых привело бы к нарушению законов сохранения. В дополнение к перечисленным законам сохранения, имеющим место в физике макроскопических тел, в теории элементарных частиц возникло много специфических законов сохранения, позволяющих интерпретировать наблюдающиеся на опыте правила отбора. Таков, например, закон сохранения барионного или ядерного заряда, выполняющегося при всех видах взаимодействий. Согласно ему, ядерное вещество сохраняется: разность между числом тяжелых частиц (барионов) и числом их античастиц не изменяется при любых процессах. Легкие элементарные частицы — лептоны (электроны, нейтрино и т.д.) также сохраняются.
Существуют и приближенные законы сохранения, выполняющиеся в одних процессах и нарушающиеся в других. Такие законы сохранения имеют смысл, если можно указать класс процессов, в которых они выполняются. Например, законы сохранения странности, изотопического спина, четности строго выполняются в процессах, протекающих за счет сильного взаимодействия, но нарушаются в процессах слабого взаимодействия. Электромагнитное взаимодействие нарушает закон сохранения изотопического спина. Таким образом, исследования элементарных частиц вновь напомнили о необходимости проверять существующие законы сохранения в каждой области явлений. Проводятся сложные эксперименты, имеющие целью обнаружить возможные слабые нарушения законов сохранения в микромире.
Проверка механических законов сохранения есть проверка соответствующих фундаментальных свойств пространства — времени. Долгое время считали, что кроме перечисленных элементов симметрии (сохранение энергии связано с однородностью времени, сохранение импульса — с однородностью пространства), пространство — время обладает зеркальной симметрией, т.е. инвариантностью относительно пространственной инверсии. Тогда должна была бы сохраняться четность. Однако в 1857 г. было экспериментально обнаружено несохранение четности в слабом взаимодействии, поставившее вопрос о пересмотре взглядов на симметрию пространства — времени и фундаментальных законов сохранения (в частности, на законы сохранения энергии и импульса).

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия "философия". Ведь обе науки имели единую цель - правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют газовым законом) утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют - сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света.
  3. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  4. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  5. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.

Не оставайтесь равнодушными - развивайтесь!

Ни одна сфера человеческой деятельности не обходится без точных наук. И как бы ни были сложны человеческие взаимоотношения, они тоже сводятся к этим законам. предлагает вспомнить законы физики, с которыми человек сталкивается и переживает каждый день своей жизни.



Самый простой, но самый важный закон – это Закон сохранения и преобразования энергии .

Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной. А мы с Вами именно в такой замкнутой системе и находимся. Т.е. сколько отдадим, столько и получим. Если мы хотим что-то получить, надо столько же перед этим отдать. И никак иначе!

А нам, конечно же, хочется получать большую зарплату, а на работу при этом не ходить. Иногда создается иллюзия, что «дуракам везет» и многим счастье сваливается на голову. Вчитайтесь в любую сказку. Героям постоянно надо преодолевать огромные трудности! То искупаться в воде студеной, то в кипятке.

Мужчины обращают на себя внимание женщин ухаживаниями. Женщины в свою очередь заботятся потом об этих мужчинах и о детях. И так далее. Так что, если вы хотите что-то получить, потрудитесь сначала отдать.

Сила действия равна силе противодействия.

Этот закон физики отражает предыдущий, в принципе. Если человек совершил негативный поступок – осознанный или нет – а потом получил ответ, т.е. противодействие. Иногда причина и следствие бывают разнесены во времени, и можно сразу и не понять, откуда ветер дует. Надо, главное, помнить, что ничего просто так не бывает.

Закон рычага.

Архимед воскликнул: «Дайте мне точку опоры, и я переверну Землю! ». Любую тяжесть можно перенести, если подобрать правильный рычаг. Нужно всегда прикинуть какой длины понадобится рычаг, чтобы добиться той или иной цели и сделать для себя вывод, расставить приоритеты: нужно ли тратить столько сил, чтобы создать правильный рычаг и передвинуть эту тяжесть или проще оставить ее в покое и заняться другой деятельностью.

Правило буравчика.

Правило заключается в том, что указывает на направление магнитного поля. Это правило отвечает на вечный вопрос: кто виноват? И указывает на то, что во всем, что с нами происходит, виноваты мы сами. Как бы обидно не было, как бы сложно не было, как бы, на первый взгляд несправедливо не было, надо всегда отдавать себе отчет в том, что причиной изначально были мы сами.

Закон гвоздя .

Когда человек хочет забить гвоздь, он же не стучит где-то рядом с гвоздем, он стучит именно по шляпке гвоздя. Но ведь гвозди сами не залезают в стены. Нужно всегда подбирать правильный молоток, чтобы не разбить гвоздь кувалдой. И забивая, надо рассчитывать удар, чтобы не погнулась шляпка. Будьте проще, заботьтесь друг о друге. Научитесь думать о ближнем.

И наконец, закон Энтропии.

Под энтропией понимают меру беспорядка системы. Иными словами, чем больше хаоса в системе, тем больше энтропия. Более точная формулировка: при самопроизвольных процессах, протекающих в системах, энтропия всегда возрастает. Как правило, все самопроизвольные процессы необратимы. Они приводят к реальным изменениям в системе, и вернуть ее в первоначальное состояние без затраты энергии невозможно. При этом нельзя в точности повторить (на все 100%) ее исходное состояние.

Чтобы лучше уяснить, о каком порядке и беспорядке идет речь, поставим опыт. Насыплем в стеклянную банку чёрных и белых дробинок. Сначала насыплем чёрных, затем белых. Дробинки будут располагаться в два слоя: снизу чёрный, сверху белый – все упорядочено. Затем несколько раз встряхнем банку. Дробинки равномерно перемешаются. И сколько бы мы затем не трясли эту банку, нам вряд ли удастся добиться, чтобы дробинки снова расположились в два слоя. Вот она, энтропия в действии!

Состояние, когда дробинки были расположены в два слоя, считается упорядоченным. Состояние, когда дробинки равномерно перемешаны, считается беспорядочным. Чтобы вернуться в упорядоченное состояние, нужно практически чудо! Или повторная кропотливая работа с дробинками. А чтобы навести хаос в банке, почти не требуется усилий.

Автомобильное колесо. Когда оно накачено, в нем избыток свободной энергии. Колесо может ехать, и значит, оно работает. Это порядок. А если проколоть колесо? Давление в нем упадет, свободная энергия «уйдет» в окружающую среду (рассеется), и работать такое колесо уже не сможет. Это хаос. Чтобы вернуть систему в исходное состояние, т.е. навести порядок, нужно провести немалую работу: заклеить камеру, смонтировать колесо, накачать его и т.д., после чего это опять нужная вещь, которая способна приносить пользу.

Тепло передается от горячего тела холодному, а не наоборот. Обратный процесс теоретически возможен, а практически никто не возьмется это делать, поскольку потребуются колоссальные усилия, специальные установки и оборудование.

Также и в обществе. Люди стареют. Дома рушатся. Утесы оседают в море. Галактики разбегаются. К беспорядку самопроизвольно стремится любая окружающая нас действительность.

Однако люди часто говорят о беспорядке как о свободе: «Нет, не хотим мы порядка! Дайте нам такую свободу, чтобы каждый мог делать то, что хочет! » Но когда каждый делает, что хочет, это не свобода – это хаос. В наше время многие восхваляют беспорядок, пропагандируют анархию - словом, все то, что разрушает и разделяет. Но свобода - не в хаосе, свобода именно в порядке.

Упорядочивая свою жизнь, человек создает себе запас свободной энергии, которую затем реализует на осуществление своих планов: работу, учебу, отдых, творчество, спорт и т.п. – иными словами, противостоит энтропии. Иначе, как бы мы смогли накопить за последние 250 лет столько материальных ценностей?!

Энтропия – это мера беспорядка, мера необратимого рассеивания энергии. Чем больше энтропия, тем больше беспорядка. Дом, в котором никто не живет, ветшает. Железо со временем ржавеет, автомобиль стареет. Отношения, о сохранении которых никто не заботится, разрушаются. Так и все остальное в нашей жизни, совершенно все!

Естественное состояние природы не равновесие, а возрастание энтропии. Этот закон неумолимо работает и в жизни одного человека. Ему ничего не надо делать, чтобы его энтропия возрастала, это происходит самопроизвольно, по закону природы. Для того чтобы снизить энтропию (беспорядок), надо приложить немало усилий. Это своего рода пощечина позитивным до дури людям (под лежачий камень и вода не течет), которых довольно много!

Поддержание успеха требует постоянных усилий. Если мы не развиваемся, то мы деградируем. И чтобы сохранить то, что у нас было раньше, мы должны сегодня сделать больше, чем делали вчера. Вещи можно содержать в порядке и даже улучшить: если краска на доме выцвела, его можно покрасить заново, причем еще красивее, чем раньше.

Люди должны пытаться «усмирить» произвольное деструктивное поведение, которое преобладает в современном мире повсеместно, стараться снизить состояние хаоса, который мы же и разогнали до грандиозных пределов. И это физический закон, а не просто треп о депрессии и негативном мышлении. Всё либо развивается, либо деградирует.

Живой организм рождается, развивается и умирает, и никто никогда не наблюдал, чтобы после смерти он оживал, молодел и возвращался в семя или утробу. Когда говорят, что прошлое никогда не возвращается, то, конечно, имеют в виду, в первую очередь, эти жизненные явления. Развитие организмов задает положительное направление стрелы времени, и смена одного состояния системы другим происходит всегда в одном направлении для всех без исключения процессов.

Валериан Чупин

Источник информации: Чайковские.Новости


Комментарии (3)

Богатство современного общества прирастает, и будет прирастать во все большей мере, прежде всего всеобщим трудом. Промышленный капитал явился первой исторической формой общественного производства, когда интенсивно начал эксплуатироваться всеобщий труд. Причем сначала тот, который достался ему даром. Наука, как заметил Маркс, ничего не стоила капиталу. Действительно, ни один капиталист не заплатил вознаграждение ни Архимеду, ни Кардано, ни Галилею, ни Гюйгенсу, ни Ньютону за практическое использование их идей. Но именно промышленный капитал в массовом масштабе начинает эксплуатировать механическую технику, а тем самым и всеобщий труд, овеществленный в ней. Маркс К, Энгельс Ф. Соч., т. 25, ч. 1, с. 116.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама